Microwave Intensified Synthesis: Batch and Flow Chemistry.

Chem Rec

Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE.

Published: January 2019

AI Article Synopsis

  • Microwave heating improves organic and inorganic synthesis, resulting in faster reactions and higher purity/yields.
  • We demonstrated its effectiveness in creating nanoparticles and polyester with optimized physical and biological properties.
  • The use of fluidic reactors for preparing metal and metal oxide nanoparticles is emphasized, along with discussions on experimental design and challenges in the field.

Article Abstract

Many studies have been conducted on organic and inorganic synthesis by microwave heating owing to its special heating mechanism, leading to improved reaction rate, higher purity and yields. We specifically demonstrated microwave heating in the fabrication of nanoparticles and polyester. By fine-tuning the microwave and experimental parameters, the materials prepared have shown excellent physical and bio-properties, e. g. narrow particle size distribution, controlled morphology, varied molecular structure and so forth. We further highlight the recent procedure of using fluidic reactors on preparing both metals and metal oxides nanoparticles. The experimental design strategies and fundamentals of the microwave interaction with chemicals are presented. Furthermore, the key factors and issues facing in this area are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.201800121DOI Listing

Publication Analysis

Top Keywords

microwave heating
8
microwave
5
microwave intensified
4
intensified synthesis
4
synthesis batch
4
batch flow
4
flow chemistry
4
chemistry studies
4
studies conducted
4
conducted organic
4

Similar Publications

Microwave welding with SiCNW/PMMA nanocomposite thin films: Enhanced joint strength and performance.

Nanotechnology

January 2025

Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.

Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.

View Article and Find Full Text PDF

Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

In this paper, a microwave thermal imaging system (MTIS) has been presented for debonding detection of radar absorbing materials (RAMs). First, an overview of the mechanism underlying microwave heating and the fundamental principle of defect detection within RAMs is presented. Then, a multifunctional MTIS capable of performing both microwave lock-in thermography (MLIT) and long-pulse microwave thermography (LPMT) has been introduced, specifically tailored for the in situ inspection of RAMs.

View Article and Find Full Text PDF

The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!