Background: Antifouling paints are enriched with biocides and employed in the maritime industry to protect moving and fixed surfaces from fouling activities of sea dwelling invertebrates. There is limited information on their effect on the non-target African catfish, Clarias gariepinus, a commonly consumed fish in Lagos.
Objectives: This study investigated the effects of two commonly used antifouling paints (Berger TBT-free (A/F783 (H)), reddish brown color and Silka Marine lead based paint, pale orange color) on a non-target catfish species, Clarias gariepinus.
Methods: The study involved an initial 96-hour acute toxicity assay followed by chronic toxicity evaluation (using 1/10th and 1/100th 96-hour median lethal concentration (LC) values) for 28 days to determine the ability of the paints to induce micronucleus and red blood cell abnormalities, and histopathological as well as oxidative stress effects in the catfish.Examined anti-oxidative stress enzyme activities include superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and glutathione-s-transferase (GST).
Results: Acute toxicity evaluation results indicated that the Berger paint was 16.1-times more toxic than Silka paint with 96-hour LC values of 0.71 mg/L and 11.49 mg/L, respectively. Results from the biochemical assay indicated significantly higher (P<0.05) levels of a lipid peroxidation product, malondialdehyde, in Silka-exposed catfish compared to the control. All enzymes showed significantly higher activities in Berger paint-exposed catfish compared to the control. There was evidence of micronucleated and binucleated cells in the red blood cells of fish exposed to both paints. Histopathological assessment indicated that the exposed fish gills showed evidence of abnormalities such as curved lamellae epithelial necrosis, epithelial lifting and hyperplasia. The liver samples of the catfish showed evidence of portal inflammation as well as mild to severe steatosis, while the gonads showed varying percentages of follicle degeneration.
Conclusions: The present study combined an array of biomarkers to determine the negative health impacts of two commonly used antifouling paints on non-target catfish inhabiting Lagos Lagoon. Further in situ studies are recommended to determine the current status of the lagoon fish.
Ethics Approval: Ethical approval was obtained from the Department of Zoology, University of Lagos, Post-Graduate Committee. Note that this work commenced before the establishment of the University of Lagos Ethical Committee for the use of animals and humans in scientific studies. The committee does not give retroactive approval but stands by existing approvals before its establishment. However, this study followed the World Medical Association principles on the treatment of animals used in research (https://www.wma.net/policies-post/wma-statement-on-animal-use-in-biomedical-research/), and also American Fisheries Society Guidelines for the Use of Fishes in Research (https://fisheries.org/policy-media/science-guidelines/guidelines-for-the-use-of-fishes-in-research/).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221448 | PMC |
http://dx.doi.org/10.5696/2156-9614-7.16.71 | DOI Listing |
Mar Pollut Bull
January 2025
Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy. Electronic address:
Marine pollution management requires identifying all sources of contaminants, yet shipping's role in marine contamination remains unexplored. To address this gap, we investigated shipping contribution to water and air pollutant loads in the Northern Adriatic Sea in 2018 and under two future scenarios. The approach integrated (i) modelled data of shipping-related emissions, (ii) load from tributaries, and (iii) land-based emissions to the atmosphere.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Life Resources, Renmin University of China, 100872 Beijing, China.
Zwitterionic hydrogels exhibit excellent nonfouling and hemocompatibility. However, the practical application of these materials as antifouling coatings for biomedical devices is hindered by several key challenges, including the harsh preparation conditions and the weak coating stability. Here, we present a two-component zwitterionic hydrogel paint for the in situ preparation of robust zwitterionic hydrogel coatings on various substrate surfaces without UV assistance.
View Article and Find Full Text PDFWater Res
December 2024
Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Rio Grande, RS 96203-900, Brazil. Electronic address:
Organotin compounds (OTs) used to be the most widely used biocide in antifouling paint systems, but the International Maritime Organization (IMO) banned them because of their high environmental toxicity to non-target organisms. Currently, at least 25 active ingredients are being employed as biocides in antifouling paint formulations. In the present study, silicone rubber-based passive sampling was used to determine the freely dissolved concentrations (C) of 6 OTs and 4 booster biocides in the water column at the entrance of Santos Port's main navigation channel, the largest Port of South America (southeastern Brazil).
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Marine Research Institute, Chungnam National University, Daejeon 34134, Republic of Korea.
The elemental and isotopic (δCu and δZn) characteristics of 34 AFP samples from 5 paint manufacturers, the isotopic fractionation during the dissolution of AFPs by seawater, and the subsequent adsorption of isotopes onto coastal fine-grained sediments were investigated to identify potential indicators (metal ratios and isotopes). The δCu and δZn values for 34 AFPs could be divided into 2 groups regardless of the type of paint or manufacturer. Dissolution by seawater induced substantial fractionation but δCu and δZn approached the bulk AFP values when the leached fraction increased.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Finnish Meteorological Institute, Atmospheric Composition Research, P.O. Box 503, Helsinki FI-00101, Finland.
The ChemicalDrift model is applied to predict concentrations of metals and polycyclic aromatic hydrocarbons emitted from shipping in European seas in 2050, compared to 2018. Sources include antifouling paints (AFPs), discharge water from scrubbers and atmospheric deposition. The fate of pollutants in the marine environment is presented, highlighting the effect of degradation and volatilization, with seasonal and regional differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!