Objectives: The beneficial outcomes of bone marrow-derived mesenchymal stem cell (BMSC) treatment on functional recovery following stroke has been well established. Furthermore, 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have also been shown to increase neuronal survival and promote the movement of BMSCs towards the sites of inflammation. However, the precise mechanisms mediating the improved neurological functional recovery in stoke models following a combination treatment of Simvastatin and BMSCs still remained poorly understood.
Materials And Methods: Here, an embolic stroke model was used to experimentally induce a focal ischemic brain injury by inserting a preformed clot into the middle cerebral artery (MCA). Following stroke, animals were treated either with an intraperitoneal injection of Simvastatin, an intravenous injection of 3 ×106 BMSCs, or a combination of these two treatments.
Results: Seven days after ischemia, the combination of Simvastatin and BMSCs led to a significant increase in BMSC relocation, endogenous neurogenesis, arteriogenesis and astrocyte activation while also reducing neuronal damage when compared to BMSC treatment alone (<0.001 for all). In addition, based on western blot analysis, following stroke there was a significant decrease in c-Fos expression (<0.001) in the combination treatment group.
Conclusion: These results further demonstrate the synergistic benefits of a combination treatment and help to improve our understanding of the underlying mechanisms mediating this beneficial effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281073 | PMC |
http://dx.doi.org/10.22038/IJBMS.2018.29382.7100 | DOI Listing |
Mikrochim Acta
January 2025
School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.
Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Pediatrics, Chacha Nehru Bal Chikitsalaya, Delhi, 110031, India.
Background: Hypothalamic-pituitary-adrenal (HPA) axis recovery after cessation of steroid therapy in children with nephrotic syndrome (NS) has hardly been studied in the literature.
Methods: This 22-month cross-sectional study recruited children (2-14 years) with NS, having received a minimum 3 months of prednisolone, now in remission, and off steroids for 1, 3, or 6 months. Serum cortisol-basal and stimulated (with long-acting intramuscular adrenocorticotropic hormone), and factors affecting them, were assessed.
Nanomaterials (Basel)
December 2024
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)@Cu(OH)-CF) was fabricated and derived from NiO@CuO-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions.
View Article and Find Full Text PDFCells
December 2024
Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China.
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Faculty of Social Work and Health, University of Applied Sciences and Arts Hildesheim/Holzminden/Göttingen, 31134 Hildesheim, Germany.
Background: Stroke is a leading cause of long-term disability, often resulting in upper extremity impairment. Telerehabilitation offers a promising approach to deliver therapy in home settings. This review aimed to evaluate the effects of home-based telerehabilitation interventions delivered to address upper extremity function in stroke patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!