The Ecology of Plant Chemistry and Multi-Species Interactions in Diversified Agroecosystems.

Front Plant Sci

Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.

Published: November 2018

Over the past few years, our knowledge of how ecological interactions shape the structure and dynamics of natural communities has rapidly advanced. Plant chemical traits play key roles in these processes because they mediate a diverse range of direct and indirect interactions in a community-wide context. Many chemically mediated interactions have been extensively studied in industrial cropping systems, and thus have focused on simplified, pairwise and linear interactions that rarely incorporate a community perspective. A contrasting approach considers the agroecosystem as a functioning whole, in which food production occurs. It offers an opportunity to better understand how plant chemical traits mediate complex interactions which can enhance or hinder ecosystem functions. In this paper, we argue that studying chemically mediated interactions in agroecosystems is essential to comprehend how agroecosystem services emerge and how they can be guaranteed through ecosystem management. First, we discuss how plant chemical traits affect and are affected by ecological interactions. We then explore research questions and future directions on how studying chemical mediation in complex agroecosystems can help us understand the emergence and management of ecosystem services, specifically biological control and pollination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262048PMC
http://dx.doi.org/10.3389/fpls.2018.01713DOI Listing

Publication Analysis

Top Keywords

plant chemical
12
chemical traits
12
interactions
8
ecological interactions
8
chemically mediated
8
mediated interactions
8
ecology plant
4
plant chemistry
4
chemistry multi-species
4
multi-species interactions
4

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.

View Article and Find Full Text PDF

Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.

Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

Background: The whitefly Bemisia tabaci is a notorious agricultural pest known for its ability to cause significant crop damage through direct feeding and virus transmission. Its remarkable adaptability and reproductive capacity are linked to its ability to acquire and integrate horizontally transferred genes (HTGs) into its genome. These HTGs increase the physiological and metabolic capacities of this pest, including cholesterol synthesis, which is critical for its survival and reproductive success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!