is a notable pathogenic fungus that causes invasive candidiasis, mainly due to its natural resistance to fluconazole. However, to date, there is limited research on the genetic population features of . We developed a set of microsatellite markers for this organism, with a cumulative discriminatory power of 1,000. Using these microsatellite loci, 48 independent strains of clearly known the sources, were analyzed. Furthermore, susceptibility to 9 antifungal agents was determined for each strain, by the Clinical and Laboratory Standards Institute broth microdilution method. Population structure analyses revealed that could be separated into two clusters. The cluster with the higher genetic diversity had wider MIC ranges for six antifungal agents. Furthermore, the highest MIC values of the six antifungal agents belonged to the cluster with higher genetic diversity. The higher genetic diversity cluster might have a better adaptive capacity when is under selection pressure from antifungal agents, and thus is more likely to develop drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256198 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.02717 | DOI Listing |
Curr Microbiol
January 2025
Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
Turmeric is affected by various phytopathogens, which cause huge economic losses to farmers. In the present study, ten isolates of Pythium spp. were isolated from infected turmeric rhizomes and characterized.
View Article and Find Full Text PDFFEMS Yeast Res
January 2025
Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India.
Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux.
View Article and Find Full Text PDFFront Microbiol
January 2025
Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czechia.
Introduction: is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from cultivated in Vietnam.
Methods: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods.
Expert Rev Anti Infect Ther
January 2025
3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Introduction: Fungal infections constitute a significant global health threat, with an estimated incidence of 6.5 million invasive fungal infections and 2.5 million associated deaths each year.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China. Electronic address:
This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!