The irregularity and uncertainty of neurophysiologic signals across different time scales can be regarded as neural complexity, which is related to the adaptability of the nervous system and the information processing between neurons. We recently reported general loss of brain complexity, as measured by multiscale sample entropy (MSE), at pain-related regions in females with primary dysmenorrhea (PDM). However, it is unclear whether this loss of brain complexity is associated with inter-subject genetic variations. Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin in the brain and is crucial to neural plasticity. The Val66Met single-nucleotide polymorphism (SNP) is associated with mood, stress, and pain conditions. Therefore, we aimed to examine the interactions of Val66Met polymorphism and long-term menstrual pain experience on brain complexity. We genotyped Val66Met SNP in 80 PDM females (20 Val/Val, 31 Val/Met, 29 Met/Met) and 76 healthy female controls (25 Val/Val, 36 Val/Met, 15 Met/Met). MSE analysis was applied to neural source activity estimated from resting-state magnetoencephalography (MEG) signals during pain-free state. We found that brain complexity alterations were associated with the interactions of Val66Met polymorphism and menstrual pain experience. In healthy female controls, Met carriers (Val/Met and Met/Met) demonstrated lower brain complexity than Val/Val homozygotes in extensive brain regions, suggesting a possible protective role of Val/Val homozygosity in brain complexity. However, after experiencing long-term menstrual pain, the complexity differences between different genotypes in healthy controls were greatly diminished in PDM females, especially in the limbic system, including the hippocampus and amygdala. Our results suggest that pain experience preponderantly affects the effect of Val66Met polymorphism on brain complexity. The results of the present study also highlight the potential utilization of resting-state brain complexity for the development of new therapeutic strategies in patients with chronic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256283PMC
http://dx.doi.org/10.3389/fnins.2018.00826DOI Listing

Publication Analysis

Top Keywords

brain complexity
36
val66met polymorphism
16
menstrual pain
16
interactions val66met
12
pain experience
12
val/met met/met
12
brain
11
complexity
11
polymorphism menstrual
8
loss brain
8

Similar Publications

Design, Synthesis, and Pharmacological Evaluation of Nonsteroidal Tricyclic Ligands as Modulators of GABA Receptors.

J Med Chem

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.

GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).

View Article and Find Full Text PDF

Timing of neuroprognostication in the ICU.

Curr Opin Crit Care

January 2025

Department of Critical Care Medicine.

Purpose Of Review: Neuroprognostication after acute brain injury (ABI) is complex. In this review, we examine the threats to accurate neuroprognostication, discuss strategies to mitigate the self-fulfilling prophecy, and how to approach the indeterminate prognosis.

Recent Findings: The goal of neuroprognostication is to provide a timely and accurate prediction of a patient's neurologic outcome so treatment can proceed in accordance with a patient's values and preferences.

View Article and Find Full Text PDF

Purpose Of Review: To increase knowledge of the natural history of recovery and long-term outcome following severe traumatic brain injury (sTBI).

Recent Findings: Recovery of consciousness and complex behaviors that presage subsequent functional recovery frequently occurs well beyond the first 7 days after injury, which is typically the time period widely used in the ICU for prognostic decision-making and establishing goals of care for. Similarly, recovery of functional independence occurs between 1 and 10 years postinjury in a substantial proportion of patients who do not recover command-following during the acute hospitalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!