InGaAs is a potential candidate for Si replacement in upcoming advanced technological nodes because of its excellent electron transport properties and relatively low interface defect density in dielectric gate stacks. Therefore, integrating InGaAs devices with the established Si platforms is highly important. Using template-assisted selective epitaxy (TASE), InGaAs nanowires can be monolithically integrated with high crystal quality, although the mechanisms of group III incorporation in this ternary material have not been thoroughly investigated. Here we present a detailed study of the compositional variations of InGaAs nanostructures epitaxially grown on Si(111) and Silicon-on-insulator substrates by TASE. We present a combination of XRD data and detailed EELS maps and find that the final Ga/In chemical composition depends strongly on both growth parameters and the growth facet type, leading to complex compositional sub-structures throughout the crystals. We can further conclude that the composition is governed by the facet-dependent chemical reaction rates at low temperature and low V/III ratio, while at higher temperature and V/III ratio, the incorporation is transport limited. In this case we see indications that the transport is a competition between Knudsen flow and surface diffusion.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaf547DOI Listing

Publication Analysis

Top Keywords

selective epitaxy
8
v/iii ratio
8
ingaas
5
facet-selective group-iii
4
group-iii incorporation
4
incorporation ingaas
4
ingaas template
4
template assisted
4
assisted selective
4
epitaxy ingaas
4

Similar Publications

Electrocatalytic transfer alkyne semi-hydrogenation with H2O as hydrogen source is industrially promising for selective electrosynthesis of high value-added alkenes while inhibiting byproduct alkanes. Although great achievements, their development has remarkably restricted by designing atomically sophisticated electrocatalysts. Here, we reported single-crystalline mesoporous copper nanoplates (meso-Cu PLs) as a robust yet highly efficient electrocatalyst for selective alkene electrosynthesis from transfer semi-hydrogenation reaction of alkyne in H2O.

View Article and Find Full Text PDF

Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks hydrogen activation and spillover.

Mater Horiz

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.

The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8).

View Article and Find Full Text PDF

Roadmap for Borophene Gas Sensors.

ACS Sens

January 2025

Chimie des Interactions Plasma Surface group, Chemistry Department, Université de Mons, 7000 Mons, Belgium.

Borophene, a two-dimensional allotrope of boron, has emerged as a promising material for gas sensing because of its exceptional electronic properties and high surface reactivity. This review comprehensively overviews borophene synthesis methods, properties, and sensing applications. However, it is crucial to acknowledge the substantial gap between the abundance of theoretical literature and the limited experimental studies.

View Article and Find Full Text PDF

Nanostructure fabrication by area selective deposition: a brief review.

Mater Horiz

January 2025

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

In recent years, area-selective deposition (ASD) processes have attracted increasing interest in both academia and industry due to their bottom-up nature, which can simplify current fabrication processes with improved process accuracy. Hence, more research is being conducted to both expand the toolbox of ASD processes to fabricate nanostructured materials and to understand the underlying mechanisms that impact selectivity. This article provides an overview of current developments in ASD processes, beginning with an introduction to various approaches to achieve ASD and the factors that affect selectivity between growth and non-growth surfaces, using area-selective atomic layer deposition (AS-ALD) as the main model system.

View Article and Find Full Text PDF

Spin-polarized edge states in two-dimensional materials hold promise for spintronics and quantum computing applications. Constructing stable edge states by tailoring two-dimensional semiconductor materials with bulk-boundary correspondence is a feasible approach. Recently layered NiI is suggested as a two-dimensional type-II multiferroic semiconductor with intrinsic spiral spin ordering and chirality-induced electric polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!