Super blinking and biocompatible nanoprobes based on dye doped BSA nanoparticles for super resolution imaging.

Nanotechnology

Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China.

Published: February 2019

As one of the super-resolved optical imaging techniques, single molecule localization microscopy (SMLM) received considerable attention due to its impressive spatial resolution. Compared with other fluorescence imaging techniques, SMLM has one particular request for the fluorophores, that is, continuous 'on' and 'off' behaviors of their signals (referred to as 'blinking'). Hence, we present here a kind of super blinking and biocompatible nanoprobes (denoted as SBNs) for SMLM. The SBNs have two main advantages, first, they possess an outstanding fluorescence blinking. Second, they are biocompatible since they are based on bovine serum albumin (BSA). The SBNs are fabricated by doping organic dyes into BSA nanoparticles. We fabricated two kinds of SBNs, one was doped with Alexa Fluor 647 (A647) and the other was doped with Alexa Fluor 594 (A594). Especially for A594 doped SBNs, the improved blinking of A594 doped SBNs induced a better localization precision as compared with A594 alone. Moreover, SMLM imaging of breast cancer cells and exosomes using the SBNs was successfully realized with high spatial resolutions. The work demonstrated here provides a new strategy to prepare novel kinds of super blinking fluorescent agents for SMLM, which broadens the selection of suitable fluorophores for SMLM.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaf03bDOI Listing

Publication Analysis

Top Keywords

super blinking
12
blinking biocompatible
8
biocompatible nanoprobes
8
bsa nanoparticles
8
imaging techniques
8
doped alexa
8
alexa fluor
8
a594 doped
8
doped sbns
8
sbns
7

Similar Publications

VPT: Video portraits transformer for realistic talking face generation.

Neural Netw

January 2025

School of Automation Science and Engineering, South China University of Technology, China. Electronic address:

Talking face generation is a promising approach within various domains, such as digital assistants, video editing, and virtual video conferences. Previous works with audio-driven talking faces focused primarily on the synchronization between audio and video. However, existing methods still have certain limitations in synthesizing photo-realistic video with high identity preservation, audiovisual synchronization, and facial details like blink movements.

View Article and Find Full Text PDF

A recruiting rate () of 0.1-5 s has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate () of rhodamines is very important for developing spontaneously blinking rhodamines.

View Article and Find Full Text PDF

Single-molecule localization microscopy (SMLM) can decipher fine details that are otherwise impossible using diffraction-limited microscopy. Often, the reconstructed super-resolved images suffer from noise, strong background and are prone to false detections that may impact quantitative imaging. To overcome these limitations, we propose a technique (corrSMLM) that recognizes and detects fortunate molecules (molecules with long blinking cycles) from the recorded data.

View Article and Find Full Text PDF

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

Fluorescence microscopy has significantly advanced biological imaging at the nanoscale, particularly with the advent of super-resolution microscopy (SRM), which transcends the Abbe diffraction limit. Most cutting-edge SR methods require high-precision optical setups, which constrain the widespread adoption of SRM. Fluorescence fluctuation-based SRM (FF-SRM) can break the diffraction limit without complex optical components, making it particularly well-suited for biological imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!