NO gas sensor based on graphene decorated with Ge quantum dots.

Nanotechnology

The Key Laboratory of RF Circuits and System of Ministry of Education, College of Electronic and Information, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.

Published: February 2019

We report a NO gas sensor based on germanium quantum dots (GeQDs)/graphene hybrids. Graphene was directly grown on germanium through chemical vapor deposition and the GeQDs were synthesized via molecular beam epitaxy. The samples were characterized by atomic force microscope, Raman spectra, scanning electron microscope, x-ray photoelectron spectroscope and transmission electron microscope with energy dispersive x-ray. By introducing GeQDs on graphene, the gas sensor sensitivity to NO was improved substantially. With the optimization of the growth time of GeQDs (600 s), the response sensitivity to 10 ppm NO can be as high as 3.88, which is 20 times higher than that of the graphene sensor without GeQDs decoration. In addition, the 600 s GeQDs/graphene hybrid sensor exhibits fast response and recovery rates as well as excellent stability. Our work may provide a new route to produce low-power consumption, portable, and room temperature gas sensor which is amenable to mass production.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaf3d7DOI Listing

Publication Analysis

Top Keywords

gas sensor
16
sensor based
8
quantum dots
8
electron microscope
8
sensor
5
gas
4
graphene
4
based graphene
4
graphene decorated
4
decorated quantum
4

Similar Publications

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Coal mining industry is one of the main source for economy of every nations, whereas safety in the underground coal mining area is still doubtful. According to some reports, there is heavy loss of life and money due to the occasional accidents in the coal mining area. Some existing researchers has been addressed this issue and approached their method.

View Article and Find Full Text PDF

Sensing of hazardous gases has an important role in ensuring safety in a variety of industries as well as environments. Mainly produced by the combustion of fossil fuels and other organic matter, ethanol is a dangerous gas that endangers human health and the environment. Stability and sensing sensitivity are major considerations when designing gas sensors.

View Article and Find Full Text PDF

Lead Phosphate Material for Exclusive Detection of Hydrogen Sulfide Gas.

ACS Sens

January 2025

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

Efficient gas sensors that can accurately detect and identify hydrogen sulfide are essential for various practical applications. Conventional resistive sensors often lack the necessary selectivity, which hampers timely and effective HS detection. This study presents lead phosphate-based gas sensors specifically designed for HS detection, which effectively eliminate interference effects.

View Article and Find Full Text PDF

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!