A digital acoustofluidic device for on-demand and oil-free droplet generation.

Nanotechnology

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.

Published: February 2019

We report a digital acoustofluidic device for on-demand and oil-free droplet generation. By applying a programmed radio frequency signal to a circular interdigital transducer, the dynamic focused acoustic pressure profiles generated rise up and dispense sample liquids from a reservoir to dynamically eject the droplets into the air. Our device allows droplets to be dispensed on demand with precisely controlled generation time and sequence, and accurate droplet volume. Moreover, we also demonstrate the generation of a droplet with a volume of 24 pL within 10 ms, as well as the encapsulation of a single cell into droplets. This acoustofluidic droplet generation technique is simple, biocompatible, and enables the on-demand droplet generation and encapsulation of many different biological materials with precise control, which is promising for single cell sampling and analysis applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaf3fdDOI Listing

Publication Analysis

Top Keywords

droplet generation
16
digital acoustofluidic
8
acoustofluidic device
8
device on-demand
8
on-demand oil-free
8
oil-free droplet
8
droplet volume
8
single cell
8
droplet
6
generation
6

Similar Publications

Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.

View Article and Find Full Text PDF

Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation.

Microsyst Nanoeng

January 2025

Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.

Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.

View Article and Find Full Text PDF

Protection Strategies Against Palmitic Acid-Induced Lipotoxicity in Metabolic Syndrome and Related Diseases.

Int J Mol Sci

January 2025

Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico.

Diets rich in carbohydrate and saturated fat contents, when combined with a sedentary lifestyle, contribute to the development of obesity and metabolic syndrome (MetS), which subsequently increase palmitic acid (PA) levels. At high concentrations, PA induces lipotoxicity through several mechanisms involving endoplasmic reticulum (ER) stress, mitochondrial dysfunction, inflammation and cell death. Nevertheless, there are endogenous strategies to mitigate PA-induced lipotoxicity through its unsaturation and elongation and its channeling and storage in lipid droplets (LDs), which plays a crucial role in sequestering oxidized lipids, thereby reducing oxidative damage to lipid membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!