A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automating Treatment Summary Development Using Electronic Billing Information: A Pilot Study of Survivors of Head and Neck Cancer. | LitMetric

Purpose: Although the provision of a treatment summary (TS) is a quality indicator in oncology, routine delivery of TSs remains challenging. Automatic TS generation could facilitate use, but data on accuracy are lacking in complex cancers such as head and neck cancer (HNC). We developed and evaluated an electronic platform to automate TS generation for HNC.

Methods: The algorithms autopopulated TSs using data from billing records and an institutional cancer registry. A nurse practitioner used the medical record to verify the accuracy of the information and made corrections electronically. Inaccurate and missing data were considered errors. We described and investigated reasons for errors in the automatically generated TSs.

Results: We enrolled a heterogeneous population of 43 survivors of HNC. Using billing data, the information on primary site, lymph node status, radiation, and chemotherapy use was accurate in 93%, 95%, 93%, and 95% of patients, respectively. Billing data captured surgery accurately in 77% of patients; once an omitted billing code was identified, accuracy increased to 98%. Chemotherapies were captured in 90% of patients. Using the cancer registry, month and year of diagnosis were accurate in 91% of cases; stage was accurate in 28% of cases. Reprogramming the algorithm to ascertain clinical stage when pathologic stage was unavailable resulted in 100% accuracy. The algorithms inconsistently identified radiation receipt and treating physicians from billing data.

Conclusion: It is feasible to automatically and accurately generate most components of TSs for HNC using billing and cancer registry data, although clinical review is necessary in some cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333382PMC
http://dx.doi.org/10.1200/JOP.18.00022DOI Listing

Publication Analysis

Top Keywords

cancer registry
12
treatment summary
8
head neck
8
neck cancer
8
hnc billing
8
billing data
8
93% 95%
8
patients billing
8
billing
7
data
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!