Two novel metal-organic framework (MOF) photocatalysts with different structures [(Cu(H2L)(4,4'-bipy)0.5(H2O)] (1) and [Co(C14H14O6.5P2)(4,4'-bipy)0.5(H2O)2]·H2O (2) were synthesized using a hydrothermal method using a phosphonate ligand [H4L = 1,1'-biphenylene-4,4'-bis(methylene)-bis(phosphonic acid)] and 4,4'-bipyridine ligand. All the samples were characterized by elemental analysis, thermal analysis, and single crystal X-ray diffraction. As novel porous materials, the two complexes showed active performance for the reduction of Cr(vi) to Cr(iii) and the photodegradation of methylene blue (MB) dye in aqueous solution under UV light. Control experiments showed that the pH value was vital for Cr(vi) reduction, meanwhile, the use of a hole scavenger of methanol promoted the photocatalytic reduction significantly. It was also demonstrated that complexes 1 and 2 were efficient for the degradation of MB. Moreover, the possible reaction mechanism of the reaction was also investigated in detail. Finally, the cyclic experiments indicated the two photocatalysts were stable and reusable, enabling them to be potential candidates for use in environment governance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt04106g | DOI Listing |
Drugs
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.
View Article and Find Full Text PDFSmall
January 2025
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands.
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
Unlabelled: The gene encoding fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.
View Article and Find Full Text PDFJ Xenobiot
January 2025
Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia.
Engineered light-sensitive molecules offer a sophisticated toolkit for the manipulation of biological systems with both spatial and temporal precision. Notably, artificial "caged" compounds can activate specific receptors solely in response to light exposure. However, the uncaging process can lead to the formation of potentially harmful byproducts.
View Article and Find Full Text PDFHeliyon
January 2025
VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
Microbial fermentation of agro-industrial residues is gaining significant traction as a sustainable and economically viable approach in bioprocessing. This study explored lactic acid production from selected agro-industrial residues: pre-treated sugarcane waste, potato peel waste, or milk processing waste with alfalfa pellets using strains of organic origin. Five homo-fermentative strains (VITJ1, VITJ2, VITJ3, VITJ4, and VITJ5) were assessed for compatibility and formed into 15 consortia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!