G-protein coupled receptor 120 (GPR120) has been shown to act as an omega-3 unsaturated fatty acid sensor and is involved in insulin secretion. However, the underlying mechanism in pancreatic β cells remains unclear. To explore the potential link between GPR120 and β-cell function, its agonists docosahexaenoic acid (DHA) and GSK137647A were used in palmitic acid (PA)-induced pancreatic β-cell dysfunction, coupled with GPR120 knockdown (KD) in MIN6 cells and GPR120 knockout (KO) mice to identify the underlying signaling pathways. and treatments of MIN6 cells and islets isolated from wild-type (WT) mice with DHA and GSK137647A restored pancreatic duodenal homeobox-1 (PDX1) expression levels and β-cell function via inhibiting PA-induced elevation of proinflammatory chemokines and activation of nuclear factor κB, c-Jun amino (N)-terminal kinases1/2 and p38MAPK signaling pathways. On the contrary, these GPR120 agonism-mediated protective effects were abolished in GPR120 KD cells and islets isolated from GPR120 KO mice. Furthermore, GPR120 KO mice displayed glucose intolerance and insulin resistance relative to WT littermates, and β-cell functional related genes were decreased while inflammation was exacerbated in islets with increased macrophages in pancreas from GPR120 KO mice. DHA and GSK137647A supplementation ameliorated glucose tolerance and insulin sensitivity, as well as improved expression and islet inflammation in diet-induced obese WT mice, but not in GPR120 KO mice. These findings indicate that GPR120 activation is protective against lipotoxicity-induced pancreatic β-cell dysfunction, via the mediation of PDX1 expression and inhibition of islet inflammation, and that GPR120 activation may serve as a preventative and therapeutic target for obesity and diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20180836 | DOI Listing |
J Adv Res
December 2024
Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:
Introduction: Inflammatory bowel disease (IBD) is often associated with impaired proliferation and differentiation of intestinal stem cells (ISCs). Eicosapentaenoic acid (EPA), which is predominantly found in fish oil, has been recognized for its intestinal health benefits, although the potential mechanisms are not well understood.
Objectives: This study aimed to investigate the regulatory role and mechanism of EPA in colonic epithelial regeneration, specifically from the perspective of ISCs.
Cell Rep Med
January 2025
Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing 100050, China. Electronic address:
Cell Mol Biol Lett
December 2024
Department of Cardiology, State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, 250012, China.
Background: Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.
Methods: To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats.
Int J Mol Sci
October 2024
National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, 1 Hunan Street, Liaocheng 252059, China.
Diabetes mellitus (DM) is a common metabolic disease that poses a severe threat to human health. Despite a range of therapeutic approaches, there remains a lack of effective and safe therapies with the existing drugs. Therefore, there is an urgent need to develop novel, effective, and safe therapeutic strategies for DM.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biochemistry, Central University of Punjab, Bathinda, India. Electronic address:
The Angiopoietin-like 4 (ANGPTL4) and ETS Variant Transcription Factor 4 (ETV4) are involved in the metabolic transition and carcinogenesis in the liver. However, the role of ETV4 in the development of non-alcoholic fatty liver disease (NAFLD) is currently unknown. Our study reveals that ETV4 expression was upregulated in the diet-induced non-alcoholic fatty liver disease, and plays a critical role in the dysregulated lipid metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!