Background: The primary objective was to investigate the clinical and radiological outcome in patients undergoing major hip surgery using a novel antibiotic containing bone substitute for local augmentation in trochanteric fracture fixation or revision of total hip arthroplasty (THA).

Methods: We implanted a novel biphasic bone substitute CERAMENT™|G consisting of hydroxyapatite, calcium sulphate and gentamicin for bone regeneration and local antibiotic delivery in 20 patients treated surgically for trochanteric femoral fracture or uncemented hip revision. Preoperative, postoperative, 3 months and 1 year clinical and radiological assessment were performed including registration of any complications. In one trochanteric fracture patient, histological analyses were performed of bone biopsies taken at removal of hardware.

Results: None of the trochanteric fractures or revision of THA showed any large migration. No local wound disturbances were seen and no infection was observed at one year follow-up. All trochanteric fractures healed at 3 months with a minimal sliding screw displacement on average 3 mm. Radiological analysis showed signs of bone remodeling and new bone formation in the substitute, illustrated also by histology in the biopsies taken from one trochanteric fracture at one year post-op.

Conclusions: Local CERAMENT™|G was shown to be safe in a limited prospective major hip surgery study. Remodeling of the bone graft substitute was observed in all patients.

Trial Registration: EU-CTR2018-004414-18 Retrospectively registered on November 20, 2018.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284312PMC
http://dx.doi.org/10.1186/s12891-018-2360-8DOI Listing

Publication Analysis

Top Keywords

bone substitute
12
trochanteric fracture
12
revision total
8
total hip
8
hip arthroplasty
8
clinical radiological
8
major hip
8
hip surgery
8
trochanteric fractures
8
remodeling bone
8

Similar Publications

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Unlabelled: Bone tissue substitutes are increasing in importance. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) act as a cell matrix and improve its mechanical properties. One of their raw materials is marine-origin by-products.

View Article and Find Full Text PDF

The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX.

View Article and Find Full Text PDF

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

Introduction: The primary objective of any implant system is to achieve firm fixation to the bone, which can be influenced by both biomechanical factors and biomaterial selection. An array of materials is used for the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!