Differential response of silencing HvIcy2 barley plants against Magnaporthe oryzae infection and light deprivation.

BMC Plant Biol

Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Madrid, Pozuelo de Alarcon, Spain.

Published: December 2018

Background: Phytocystatins (PhyCys) act as endogenous regulators of cysteine proteases (CysProt) involved in various physiological processes. Besides, PhyCys are involved in plant reactions to abiotic stresses like drought or darkness and have been used as effective molecules against different pests and pathogens. The barley PhyCys-CysProt system is considered a model of protease-inhibitor regulation of protein turnover. Thirteen barley cystatins (HvCPI-1 to HvCPI-13) have been previously identified and characterized. Among them HvCPI-2 has been shown to have a relevant role in plant responses to pathogens and pests, as well as in the plant response to drought.

Results: The present work explores the multiple role of this barley PhyCys in response to both, biotic and abiotic stresses, focusing on the impact of silencing this gene. HvIcy-2 silencing lines behave differentially against the phytopathogenic fungus Magnaporthe oryzae and a light deprivation treatment. The induced expression of HvIcy-2 by the fungal stress correlated to a higher susceptibility of silencing HvIcy-2 plants. In contrast, a reduction in the expression of HvIcy-2 and in the cathepsin-L and -B like activities in the silencing HvIcy-2 plants was not accompanied by apparent phenotypical differences with control plants in response to light deprivation.

Conclusion: These results highlight the specificity of PhyCys in the responses to diverse external prompts as well as the complexity of the regulatory events leading to the response to a particular stress. The mechanism of regulation of these stress responses seems to be focused in maintaining the balance of CysProt and PhyCys levels, which is crucial for the modulation of physiological processes induced by biotic or abiotic stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282322PMC
http://dx.doi.org/10.1186/s12870-018-1560-6DOI Listing

Publication Analysis

Top Keywords

abiotic stresses
12
magnaporthe oryzae
8
light deprivation
8
physiological processes
8
biotic abiotic
8
expression hvicy-2
8
silencing hvicy-2
8
hvicy-2 plants
8
silencing
5
phycys
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!