Background: In coeliac disease, ingestion of gluten induces the production of transglutaminase 2 (TG2)-targeted autoantibodies by TG2-specific plasma cells present at high frequency in the small intestinal mucosa in untreated disease. During treatment with a gluten-free diet (GFD), the number of these cells decreases considerably. It has not been previously investigated whether the cells are also present prior to development of villous atrophy, or in non-responsive patients and those with dietary lapses. We aimed to define the frequency of small bowel mucosal TG2-specific plasma cells in coeliac disease patients with varying disease activity, and to investigate whether the frequency correlates with serum and small intestinal TG2-targeting antibodies as well as mucosal morphology and the number of intraepithelial lymphocytes.
Results: Mucosal TG2-specific plasma cells were found in 79% of patients prior to development of mucosal damage, in all patients with villous atrophy, and in 63% of the patients after 1 year on GFD. In these disease stages, TG2-specific plasma cells accounted for median of 2.3, 4.3, and 0.7% of all mucosal plasma cells, respectively. After long-term treatment, the cells were present in 20% of the patients in clinical remission (median 0%) and in 60% of the patients with poor dietary adherence (median 5.8%). In patients with non-responsive coeliac disease despite strict GFD, the cells were found in only one (9%) subject; the cells accounted for 2.4% of all plasma cells. A positive correlation between the percentage of TG2-specific plasma cells and serum TG2 antibody levels (r = 0.69, P < 0.001) and the intensity of mucosal TG2-targeting IgA deposits (r = 0.43, P < 0.001) was observed.
Conclusions: Our results show that TG2-specific plasma cells are already detectable prior to villous atrophy, and that generally their frequency increases during overt disease. By contrast, on GFD, the percentage of these cells decreases. Overall, the presence of TG2-specific plasma cells in the small bowel mucosa mirrors the presence of gluten in the diet, but the frequency is not always parallel to the level of serum or intestinal TG2 antibodies. These findings increase the knowledge about the development of the TG2 plasma cell responses especially in the early phases of coeliac disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282384 | PMC |
http://dx.doi.org/10.1186/s12865-018-0275-7 | DOI Listing |
Anim Microbiome
January 2025
Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, 32610, USA.
Background: Cows that develop metritis experience dysbiosis of their uterine microbiome, where opportunistic pathogens overtake uterine commensals. An effective immune response is critical for maintaining uterine health. Nonetheless, periparturient cows experience immune dysregulation, which seems to be intensified by prepartum over-condition.
View Article and Find Full Text PDFEMBO Rep
January 2025
Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
Cytotoxic lymphocytes are crucial to our immune system, primarily eliminating virus-infected or cancerous cells via perforin/granzyme killing. Perforin forms transmembrane pores in the plasma membrane, allowing granzymes to enter the target cell cytosol and trigger apoptosis. The prowess of cytotoxic lymphocytes to efficiently eradicate target cells has been widely harnessed in immunotherapies against haematological cancers.
View Article and Find Full Text PDFNat Rev Urol
January 2025
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Spatial transcriptomics has emerged as a powerful tool for discerning the heterogeneity of the tumour microenvironment across various cancers, including renal cell carcinoma (RCC). Spatial transcriptomics-based studies conducted in clear-cell RCC (the only RCC subtype studied using this technique to date) have given insights into spatial interactions within this disease. These insights include the role of epithelial-to-mesenchymal transitioning, revealing proximity-dependent interactions between tumour cells, fibroblasts, interleukin-2-expressing macrophages and hyalinized regions.
View Article and Find Full Text PDFSci Rep
January 2025
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:
Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!