The symmetric biphasic pulses used in contemporary cochlear implants (CIs) consist of both cathodic and anodic currents, which may stimulate different sites on spiral ganglion neurons and, potentially, interact with each other. The effect on the order of anodic and cathodic stimulation on loudness at short inter-pulse intervals (IPIs; 0-800 s) is investigated. Pairs of opposite-polarity pseudomonophasic (PS) pulses were used and the amplitude of each pulse was manipulated independently. In experiment 1 the two PS pulses differed in their current level in order to elicit the same loudness when presented separately. Six users of the Advanced Bionics CI (Valencia, CA) loudness-ranked trains of the pulse pairs using a midpoint-comparison procedure. Stimuli with anodic-leading polarity were louder than those with cathodic-leading polarity for IPIs shorter than 400 s. This effect was small-about 0.3 dB-but consistent across listeners. When the same procedure was repeated with both PS pulses having the same current level (experiment 2), anodic-leading stimuli were still louder than cathodic-leading stimuli at very short intervals. However, when using symmetric biphasic pulses (experiment 3) the effect disappeared at short intervals and reversed at long intervals. Possible peripheral sources of such polarity interactions are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.5070150 | DOI Listing |
Soft Matter
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.
Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
J Neural Eng
November 2024
Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany.
Phrenic nerve stimulation reduces ventilator-induced-diaphragmatic-dysfunction, which is a potential complication of mechanical ventilation. Electromagnetic simulations provide valuable information about the effects of the stimulation and are used to determine appropriate stimulation parameters and evaluate possible co-activation.Using a multiscale approach, we built a novel detailed anatomical model of the neck and the phrenic nerve.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!