Bipolar disorder and 1513A>C P2RX7 polymorphism frequency.

Neurosci Lett

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil. Electronic address:

Published: February 2019

Although the etiology of Bipolar Disorder (BD) remains unknown, a strong genetic component to the pathogenesis and risk for this disorder has been widely hypothesized. Several risk genes for BD have been identified; of these, the purinergic P2 × 7 receptor (P2 × 7R) constitutes a pro-inflammatory receptor and a potential risk gene candidate. The purpose of the present study was to assess the frequency of the 1513 A > C P2RX7 polymorphism (rs3751143; Glu496Ala), which leads to receptor loss-of-function, in 154 BD patients versus 184 control subjects. The existence of a differential modulation of P2 × 7R was also analyzed in 22 euthymic BD patients, in comparison to 18 healthy controls. Our data show a decrease in 1513C allele frequency (p = 0.045) and a potential increase in 1513 A A/AC (p = 0.055) genotype frequency in BD patients, compared to controls, indicating an enhanced function of the pro-inflammatory P2 × 7 receptor in BD subjects. Interestingly, no differences in P2RX7 gene and protein expression were found between euthymic BD patients and matched healthy controls. In conclusion, our results suggest that P2 × 7R might play a role in the pathophysiology of BD and add new information regarding this receptor as a potential biomarker for the prediction and diagnosis of the disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2018.11.055DOI Listing

Publication Analysis

Top Keywords

bipolar disorder
8
p2rx7 polymorphism
8
p2 × 7 receptor
8
receptor potential
8
euthymic patients
8
healthy controls
8
receptor
5
disorder 1513a>c
4
1513a>c p2rx7
4
frequency
4

Similar Publications

Background And Hypothesis: Sequential saccade planning requires corollary discharge (CD) signals that provide information about the planned landing location of an eye movement. These CD signals may be altered among individuals with schizophrenia (SZ), providing a potential mechanism to explain passivity and anomalous self-experiences broadly. In healthy controls (HC), a key oculomotor CD network transmits CD signals from the thalamus to the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and also remaps signals from FEF to IPS.

View Article and Find Full Text PDF

Background: Electroconvulsive therapy (ECT) is an effective treatment for treatment-resistant depression (TRD). There are limited data on the improvement of anxiety symptoms in patients receiving ECT for TRD.

Objective: The aim of the study was to examine the extent to which anxiety symptom severity improves, relative to improvements in depressive symptoms, in TRD patients receiving an acute course of ECT.

View Article and Find Full Text PDF

There remains a scarcity of studies to evaluate the treatment effect of electroconvulsive therapy (ECT). Functional near-infrared spectroscopy (fNIRS) offers a cost-effective method to measure cerebral hemodynamics. This study used fNIRS to evaluate the effect of ECT in patients suffering from schizophrenia or bipolar disorder (manic phase).

View Article and Find Full Text PDF

Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.

View Article and Find Full Text PDF

Epidemiological evidence from the past 20 years indicates that environmental chemicals brought into the air by the vaporization of volatile organic compounds and other anthropogenic pollutants might be involved, at least in part, in the development or progression of psychiatric disorders. This evidence comes primarily from occupational work studies in humans, with indoor occupations being the most important sources of airborne pollutants affecting neural circuits implicated in mood disorders (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!