A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated method for quantitative morphometry and oxygen transport modeling in striated muscle. | LitMetric

Identifying structural limitations in O transport is primarily restricted by current methods employed to characterize the nature of physiological remodeling. Inadequate resolution or breadth of available data has impaired development of routine diagnostic protocols and effective therapeutic strategies. Understanding O transport within striated muscle faces major challenges, most notably in quantifying how well individual fibers are supplied by the microcirculation, which has necessitated exploring tissue O supply using theoretical modeling of diffusive exchange. With capillary domains identified as a suitable model for the description of local O supply and requiring less computation than numerically calculating the trapping regions that are supplied by each capillary via biophysical transport models, we sought to design a high-throughput method for histological analysis. We present an integrated package that identifies optimal protocols for identification of important input elements, processing of digitized images with semiautomated routines, and incorporation of these data into a mathematical modeling framework with computed output visualized as the tissue partial pressure of O (Po) distribution across a biopsy sample. Worked examples are provided using muscle samples from experiments involving rats and humans. NEW & NOTEWORTHY Progress in quantitative morphometry and analytical modeling has tended to develop independently. Real diagnostic power lies in harnessing both disciplines within one user-friendly package. We present a semiautomated, high-throughput tool for determining muscle phenotype from biopsy material, which also provides anatomically relevant input to quantify tissue oxygenation, in a coherent package not previously available to nonspecialist investigators.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00170.2018DOI Listing

Publication Analysis

Top Keywords

quantitative morphometry
8
striated muscle
8
integrated method
4
method quantitative
4
morphometry oxygen
4
transport
4
oxygen transport
4
modeling
4
transport modeling
4
modeling striated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!