Context And Objective: Being born small or large for gestational age and intrauterine exposure to gestational diabetes (GDM) increase the risk of type 2 diabetes in the offspring. However, the potential combined deleterious effects of size at birth and GDM exposure remains unknown. We examined the independent effect of size at birth and the influence of GDM exposure in utero on cardiometabolic traits, body composition, and puberty status in children.

Design, Participants, And Methods: The present study was a longitudinal birth cohort study. We used clinical data from 490 offspring of mothers with GDM and 527 control offspring aged 9 to 16 years, born singleton at term from the Danish National Birth Cohort with available birthweight data.

Results: We found no evidence of a U-shaped association between size at birth (expressed as birthweight, sex, and gestational age adjusted z-score) and cardiometabolic traits. Body size in childhood and adolescence reflected the size at birth but was not reflected in any metabolic outcome. No synergistic adverse effect of being born small or large for gestational age and exposure to GDM was shown. However, GDM was associated with an adverse metabolic profile and earlier onset of female puberty in childhood and adolescence independently of size at birth.

Conclusion: In childhood and adolescence, we found GDM was a stronger predictor of dysmetabolic traits than size at birth. The combination of being born small or large and exposed to GDM does not exacerbate the metabolic profile in the offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2018-02044DOI Listing

Publication Analysis

Top Keywords

size birth
24
born small
12
small large
12
gestational age
12
childhood adolescence
12
exposure gestational
8
gestational diabetes
8
stronger predictor
8
predictor dysmetabolic
8
dysmetabolic traits
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!