Scalable synthesis of β-truxinic acid (CBDA-4) was accomplished by capturing and photodimerizing a metastable crystalline solid of trans-cinnamic acid. This synthetic approach builds a foundation for investigating the properties and applications of the useful diacid. The X-ray crystal structure of CBDA-4 was determined for the first time. The cyclobutane ring in CBDA-4 was cleaved upon heating, making it a promising building block for thermally recyclable/degradable materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc08017hDOI Listing

Publication Analysis

Top Keywords

scalable preparation
4
preparation property
4
property investigation
4
investigation cis-cyclobutane-12-dicarboxylic
4
acid
4
cis-cyclobutane-12-dicarboxylic acid
4
acid β-trans-cinnamic
4
β-trans-cinnamic acid
4
acid scalable
4
scalable synthesis
4

Similar Publications

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Condensation of carboxylic acids with amines using the BocO/DMAP system under solvent-free conditions.

Org Biomol Chem

January 2025

Institute of Condensed Matter and Nanosciences, Molecules Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Bâtiment Lavoisier, Pl. Louis Pasteur, 1, bte 3. 1348, Louvain La Neuve, Belgium.

The present study describes the use of the di--butyl dicarbonate (BocO)/4-(,-dimethylamino)pyridine (DMAP) system for the amidation of carboxylic acids under neat conditions without heating. A set of carboxylic acids was explored, such as non-steroidal anti-inflammatory drugs (NSAIDs), fatty acids and protected prolines in the presence of aromatic, benzylic and aliphatic amines as nucleophilic partners. The scope of this easy approach was extended to the preparation of thirty-two diverse carboxylic amides, which were recovered with isolated yields varying from moderate to excellent.

View Article and Find Full Text PDF

extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway.

Food Funct

January 2025

Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.

derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied.

View Article and Find Full Text PDF

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!