A high-grain (HG) diet can result in ruminal subacute acidosis, which is detrimental to gut health and can lead to decreased productivity. This study investigated the ileal epithelial microbiota and its relationship with host epithelial function in goats fed a HG diet (concentrate/hay, 90:10) and a control diet (concentrate/hay, 55:45), aiming to elucidate the mechanisms involved in ileal adaptation to subacute acidosis. The HG challenge increased the ileal volatile fatty acid concentration ( p = 0.030) and altered the ileal epithelial microbiota by increasing (FDR < 0.05) relative abundances of active carbohydrate and protein degraders Synergistetes, Prevotella, Fibrobacter, Clostridium, Treponema, and unclassified Ruminococcaceae by 20.1-, 6.3-, 16.8-, 8.5-, 19.9-, and 7.1-fold, respectively. However, the HG diet tended to reduce (FDR < 0.10) the relative abundance of Candidatus Arthromitus (38.8 ± 36.1 versus 2.1 ± 3.1). Microbial functional potentials inferred using PICRUSt indicated that the HG challenge elevated abundances of pathways associated with metabolism of amino acid, glycan, cofactors, and vitamins, whereras it decreased pathways associated with signal transduction, xenobiotic biodegradation, and metabolism. Additionally, in the ileal epithelium of HG goats, transcriptome analysis identified the increment (FDR < 0.10) of candidate genes involved in metabolism of carbohydrates, lipids, proteins, vitamins, and the proinflammatory cytokine pathway, while downregulating genes encoding antimicrobials and complements (FDR < 0.05). Collectively, the HG challenge shifted the structure and functional potentials of the ileal microbial community and affected the host responses in the ileum of goats toward increased metabolic activities of macro- and micronutrients, together with an increased risk of gut inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b05591DOI Listing

Publication Analysis

Top Keywords

epithelial microbiota
12
subacute acidosis
8
ileal epithelial
8
diet concentrate/hay
8
fdr 005
8
fdr 010
8
functional potentials
8
pathways associated
8
ileal
6
linkages epithelial
4

Similar Publications

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

POLYSORBATE 80 AND CARBOXYMETHYLCELLULOSE: A DIFFERENT IMPACT ON EPITHELIAL INTEGRITY WHEN INTERACTING WITH THE MICROBIOME.

Food Chem Toxicol

January 2025

Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain. Electronic address:

The consumption of dietary emulsifiers, including polysorbate 80 (P80) and sodium carboxymethylcellulose (CMC), has raised safety concerns due to its interaction with the intestinal microbiome. This study demonstrated that increasing concentrations of P80 and CMC added to a dynamic four-stage gut microbiota model (BFBL gut simulator) altered the microbiome composition and impacted epithelial integrity in a dose-dependent manner. 16S rDNA amplicon-based metagenomics analysis revealed that these emulsifiers increased microbial groups with proinflammatory capacities while decreasing microbial taxa known to enhance barrier function.

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Importance of Fecal Microbiota Transplantation and Molecular Regulation as Therapeutic Strategies in Inflammatory Bowel Diseases.

Nutrients

December 2024

Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.

Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.

View Article and Find Full Text PDF

The neonatal period is a critical phase for the development of the intestinal immune system, marked by rapid adaptation to the external environment and unique nutritional demands. Breast milk plays a pivotal role in this transition, yet the mechanisms by which it influences neonatal mucosal immunity remain unclear. This review examines the potential mechanisms by which cell-free DNA (cfDNA) in breast milk may impact neonatal immune development, particularly through Toll-like receptor 9 (TLR9) signalling and gut microbiota interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!