A new antibiotic complex of six aureolic acids was isolated from the marine sediment-associated strain Streptomyces sp. KMM 9048. Four of the compounds (3-6) were found to be similar but not identical to the known chromomycins A₂, A₃, demethyl chromomycin A₃ and A₄. The two remaining.compounds; A₂₋₁ (1) and A₃₋₁ (2), were established as novel chromomycin analogs, which did not contain sugar B. Spectroscopic methods including ID and 2D NMR, and HRMS and MS/MS were applied for structure elucidation. Compounds 1-5 showed strong antimicrobial activity against Gram-positive indicatory bacteria Enterococcusfaecium, Staphylococcus aureus, S. epidernzidis, and Bacillus subtilis. Antitumor assay indicated that all tested compounds, in different manners, inhibited colony formation of RPMI-7951 and SK-Mel-28 cancer cells. This is the first study reporting the inhibitory effects of chromomycin analogs 1-5 on the colony formation of the investigated cancer cell lines. Compound 3, in a concentration of 5 nM, inhibited colony formation of RPMI-7951 and SK-Mel-28 cells by 82 % and 72 %, respectively. Our finding indicated that, of the compounds tested, 3 and 4 are promising anticancer and antimicrobial agents.

Download full-text PDF

Source

Publication Analysis

Top Keywords

colony formation
12
complex aureolic
8
aureolic acids
8
marine sediment-associated
8
sediment-associated strain
8
strain streptomyces
8
chromomycin analogs
8
inhibited colony
8
formation rpmi-7951
8
rpmi-7951 sk-mel-28
8

Similar Publications

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).

View Article and Find Full Text PDF

Background: Phaeohyphomycosis is a very rare fungal infection, which is one of more usual complications in immunocompromised and/or traumatic patients, has never been reported especially in a cytological field. We describe a first case of subcutaneous phaeohyphomycosis caused by Exophiala xenobiotica (E. xenobiotica) in a poorly controlled diabetic patient, and in which a correct cytological diagnosis of phaeohyphomycosis was possible to conclude.

View Article and Find Full Text PDF

Cryopreservation is a widely used technique to preserve biological samples for extended periods of time at low temperatures. Even though it is known to have significant effects on cell viability, its effect on their metabolism remains unexplored. Studying how cryopreservation influences the metabolism of cells is important to guarantee the reliability of samples transported between sites for analysis.

View Article and Find Full Text PDF

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!