Influenza remains a highly pathogenic and hardly controlled human infection. The ability of selecting drug-resistant variants necessitates the search and development of novel anti-influenza drugs. Herein, we describe the synthesis and evaluation of a series of novel 2-substituted 7,8-dihydro-6H-imidazo[2,1-b][1,3]benzothiazol-5-ones 3a-k for their virus-inhibiting activity against influenza A virus. The new analogues 3a-k prepared in two steps from commercially available cyclohexane-1,3-diones were fully characterized by their NMR and mass spectral data. Among the new derivatives screened for cytotoxicity and in vitro antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells, three analogues 3i-k containing a thiophene unit were found to exhibit high virus-inhibiting activity (high SI values) and a favorable toxicity profile. The compound 3j (CC : >1000 μM, SI = 77) with higher potency is the best anti-influenza hit analogue for further structural optimization and drug development. The most active compounds did not inhibit viral neuraminidase and possess therefore other targets and mechanisms of activity than the currently used neuraminidase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201800225DOI Listing

Publication Analysis

Top Keywords

virus-inhibiting activity
12
activity influenza
12
influenza virus
12
activity
5
synthesis novel
4
novel derivatives
4
derivatives 78-dihydro-6h-imidazo[21-b][13]benzothiazol-5-one
4
78-dihydro-6h-imidazo[21-b][13]benzothiazol-5-one virus-inhibiting
4
influenza
4
virus influenza
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!