A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-Scale Alignment of Polymer Semiconductor Nanowires for Efficient Charge Transport via Controlled Evaporation of Confined Fluids. | LitMetric

Long-range alignment of conjugated polymers is as critical as polymer chain packing for achieving efficient charge transport in polymer thin films used in electronic and optoelectronic devices. Here, the present study reports a facile, scalable strategy that enables the deposition of macroscopically aligned polymer semiconductor nanowire (NW)-array films with highly enhanced charge carrier mobility, using a modified controlled evaporative self-assembly (MCESA) technique. Organic field-effect transistors (OFETs) based on highly oriented poly(3-hexylthiophene) (P3HT)-NW films exhibit more than 10-fold enhancement of carrier mobility, with the highest mobility of 0.13 cm V s, compared to the OFETs based on pristine P3HT films. Significantly, large-area aligned P3HT NW-films, which are deposited over 12 arrays of transistors on a 4 in. wafer by an MCESA coating, result in lower device performance variation (i.e., standard deviation ≈ ±0.0172 (16%) cm V s) as well as an excellent average device performance (i.e., average charge mobility ≈ 0.11 cm V s), compared to those obtained using the conventional CESA coating, overcoming a critical challenge in the field of OFETs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b18055DOI Listing

Publication Analysis

Top Keywords

polymer semiconductor
8
efficient charge
8
charge transport
8
carrier mobility
8
ofets based
8
device performance
8
large-scale alignment
4
polymer
4
alignment polymer
4
semiconductor nanowires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!