Large carbon networks featuring hierarchical pores and atomically dispersed metal sites (ADMSs) are ideal materials for energy storage and conversion due to the spatially continuous conductive networks and highly active ADMSs. However, it is a challenge to synthesize such ADMS-decorated carbon networks. Here, an innovative fusion-foaming methodology is presented in which energetic metal-organic framework (EMOF) nanoparticles are puffed up to submillimeter-scaled ADMS-decorated carbon networks via a one-step pyrolysis. Their extraordinary catalytic performance towards oxygen reduction reaction verifies the practicability of this synthetic approach. Moreover, this approach can be readily applicable to a wide range of unexplored EMOFs, expanding scopes for future materials design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201811126DOI Listing

Publication Analysis

Top Keywords

carbon networks
16
energetic metal-organic
8
large carbon
8
atomically dispersed
8
dispersed metal
8
metal sites
8
adms-decorated carbon
8
networks
5
puffing energetic
4
metal-organic frameworks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!