Background: Pancreatic cancer (PC) has become the fourth most lethal among human cancers. Long noncoding RNAs (lncRNAs) have been reported to play a role in the progression of a variety of cancers. However, the role of lncRNA SNHG1 in PC is not clear.

Methods: Real-time Quantitative PCR Detection System (qPCR) was used to detect the expression of SNHG1 in PC cells. Then, the SNHG1 knockdown cell was constructed with si-SNHG1. AsPC-1 and PANC1 cells were used to analyze the ability of cell proliferation, invasion, and migration. MTT assay was used to analyze the proliferation ability. Transwell experiments and wound healing experiments were used to detect the capacity of invasion and migration. Finally, Western blot analysis was used to explore the mechanism of SNHG1 in PC.

Results: SNHG1 was significantly upregulated in PC cells. Knockdown of SNHG1 could obviously suppress cell proliferation, invasion, and migration. Furthermore, SNHG1 knockdown inhibited the activation of the Notch-1 signaling pathway and inhibited the expression of N-cadherin, Hes1, Vimentin, Notch-1. The inhabitation was reversed when Notch-1 was overexpressed in si-SNHG1 cells.

Conclusion: The lncRNA SNHG1 promotes cell growth and metastasis in PC through activation of the Notch-1 signaling pathway in PC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27897DOI Listing

Publication Analysis

Top Keywords

cell proliferation
12
notch-1 signaling
12
signaling pathway
12
invasion migration
12
snhg1
9
long noncoding
8
pancreatic cancer
8
lncrna snhg1
8
snhg1 knockdown
8
proliferation invasion
8

Similar Publications

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1.

Graefes Arch Clin Exp Ophthalmol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.

Purpose: To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.

Methods: Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!