A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MER: a shell script and annotation server for minimal named entity recognition and linking. | LitMetric

MER: a shell script and annotation server for minimal named entity recognition and linking.

J Cheminform

LASIGE, Faculdade de Ciências, Universidade de Lisboa, 1749 016, Lisbon, Portugal.

Published: December 2018

Named-entity recognition aims at identifying the fragments of text that mention entities of interest, that afterwards could be linked to a knowledge base where those entities are described. This manuscript presents our minimal named-entity recognition and linking tool (MER), designed with flexibility, autonomy and efficiency in mind. To annotate a given text, MER only requires: (1) a lexicon (text file) with the list of terms representing the entities of interest; (2) optionally a tab-separated values file with a link for each term; (3) and a Unix shell. Alternatively, the user can provide an ontology from where MER will automatically generate the lexicon and links files. The efficiency of MER derives from exploring the high performance and reliability of the text processing command-line tools grep and awk, and a novel inverted recognition technique. MER was deployed in a cloud infrastructure using multiple Virtual Machines to work as an annotation server and participate in the Technical Interoperability and Performance of annotation Servers task of BioCreative V.5. The results show that our solution processed each document (text retrieval and annotation) in less than 3 s on average without using any type of cache. MER was also compared to a state-of-the-art dictionary lookup solution obtaining competitive results not only in computational performance but also in precision and recall. MER is publicly available in a GitHub repository ( https://github.com/lasigeBioTM/MER ) and through a RESTful Web service ( http://labs.fc.ul.pt/mer/ ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755715PMC
http://dx.doi.org/10.1186/s13321-018-0312-9DOI Listing

Publication Analysis

Top Keywords

mer
8
annotation server
8
recognition linking
8
named-entity recognition
8
entities interest
8
text
5
mer shell
4
shell script
4
annotation
4
script annotation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!