Serum myoglobin is one of the earliest markers for the diagnosis of acute myocardial infarction. It is, therefore, critical to develop a point-of-care testing technology for myoglobin detection. In this work, we reported a sensitive plasmonic immunoassay-based on enzyme-mediated localized surface plasmon resonance change of gold nanorods for the point-of-care testing detection of myoglobin. In addition, we developed a novel plasmonic immunoassay reader using the ambient light sensor of smart phone to increase the accessibility and utility of the plasmonic immunoassay. The linear detection range of gold nanorods-based plasmonic immunoassay for myoglobin detection was 0.1-1000 ng mL and the limit of detection was 0.057 ng mL. Myoglobin in serum samples was also analyzed by the plasmonic immunoassay. The results were significantly correlated with those of conventional enzyme-linked immunosorbent assay. The plasmonic immunoassay, coupled with smart phone-based reader, could be widely used for point-of-care testing application of acute myocardial infarction, especially in the regions with limited technological resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281541 | PMC |
http://dx.doi.org/10.1186/s11671-018-2806-9 | DOI Listing |
Anal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
Adv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.
View Article and Find Full Text PDFTalanta
December 2024
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China. Electronic address:
In the study, an eccentric heterogeneous core-shell nanomaterial Au@CuSe was simply and rapidly synthesized. This novel nano-structure exhibits superior colorimetric intensity, enhanced antibody coupling efficiency, and strong broadband absorption across the visible to near-infrared spectrum, with a photothermal conversion efficiency of 59.40%.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!