AI Article Synopsis

  • - The study investigates the effects of transcutaneous vagus nerve stimulation (tVNS) on stomach muscle activity in patients after abdominal surgery to see if it can help prevent postoperative ileus (POI), a common complication of such surgeries.
  • - Fourteen patients were monitored during surgery with electromyography to assess stomach muscle activity and gastrin levels before and after tVNS application, revealing significant changes in both metrics after stimulation.
  • - Findings suggest that tVNS is a safe and effective method to enhance stomach muscle activity and may be beneficial for reducing the risk of POI, indicating its potential as a non-invasive treatment option.

Article Abstract

Purpose: Postoperative ileus (POI) is a common complication after abdominal surgery. Invasive stimulation of the cervical vagus nerve is known to reduce inflammatory response and ameliorated POI after surgery in a mouse model. However, the transcutaneous vagus nerve stimulation (tVNS) is a possible non-invasive approach. In this clinical study, we aimed to investigate the effect of tVNS on the activation of the stomach muscle in humans.

Methods: Patients requiring open laparotomy were screened for this prospective proof of concept clinical study. After open laparotomy, muscle activity of the stomach was measured by a free running electromyography (EMG) before and during tVNS on the ear. Frequency and amplitude of compound gastric action potentials were the electrophysiological parameters we assessed to reveal the changes in electro motor gastric activity. Gastrin levels as a surrogate marker for vagus nerve activation was analyzed before, 1 and 3 h after tVNS.

Results: Fourteen patients were included, no severe adverse events and no medical device related adverse events occurred. tVNS led to significant reduction of action potential frequency and significant elevation of action potential amplitude in the stomach compared to control. Gastrin levels were significantly elevated 3 h after tVNS compared to levels before tVNS.

Conclusion: Application of tVNS is a safe and feasible procedure during surgical intervention. Our results provide evidence that tVNS activates efferent visceral vagal fibers. Therefore, this low risk and easy to perform method could be useful to prevent postoperative ileus.

Clinical Trial Register Number: DRKS00013340.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00384-018-3204-6DOI Listing

Publication Analysis

Top Keywords

vagus nerve
16
transcutaneous vagus
8
nerve stimulation
8
muscle activity
8
clinical study
8
open laparotomy
8
gastrin levels
8
adverse events
8
action potential
8
tvns
7

Similar Publications

Method for measuring cervical vagal nerve activity in conscious rats.

Am J Physiol Endocrinol Metab

January 2025

Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan.

The current study aimed to propose a method to directly measure right cervical vagal nerve activity (cVNA) alongside renal sympathetic nerve activity (RSNA) in conscious rats. The right cervical vagus nerve was surgically exposed and fitted with a bipolar electrode to record cVNA. A microcatheter was used to administer levobupivacaine to selectively block afferent cVNA.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated.

View Article and Find Full Text PDF

Background: Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) was administered to participants diagnosed with mild cognitive impairment (MCI) to improve word-list memory (primary outcome) and other cognitive skills.

Method: A randomized, double-blind, placebo-controlled crossover design was used for this trial. Participants with MCI (n = 59) were sorted into one of two sequences: Sham-tVNS or tVNS-Sham.

View Article and Find Full Text PDF

Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.

View Article and Find Full Text PDF

Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS), have emerged as important treatment options for patients with LGS who do not respond adequately to antiseizure medications. This review, developed with input from the Pediatric Epilepsy Research Consortium (PERC) LGS Special Interest Group, provides practical guidance for clinicians on the use of these neuromodulation approaches in patients with LGS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!