In this manuscript, we explored the key molecular networks for oil biosynthesis with the transcriptome and metabolome of B. napus embryo at different developmental stages. Brassica napus (B. napus) is an important oil crop worldwide, yet the molecular pathways involved in oil biosynthesis in seeds are not fully understood. In this study, we performed a combined investigation of the gene expression profiles and metabolite content in B. napus seeds at 21, 28 and 35 days after flowering (DAF), when seed oil biosynthesis takes place. The total triacylglycerol (TAG) content in seed embryos increased over the course of seed maturation, and was accompanied by changes in the fatty acid profile, an increase in lipid droplets, and a reduction in starch grains. Metabolome analysis showed that the total amino acid, free fatty acid and organic acid contents in seed embryos decreased during seed maturation. In total, the abundance of 76 metabolites was significantly different between 21 and 28 DAF, and 68 metabolites changed in abundance between 28 and 35 DAF. Transcriptome analysis showed that the set of genes differentially expressed between stages was significantly enriched in those related to lipid metabolism, transport, protein and RNA metabolism, development and signaling, covering most steps of plant lipid biosynthesis and metabolism. Importantly, the metabolite and gene expression profiles were closely correlated during seed development, especially those associated with TAG and fatty acid biosynthesis. Further, the expression of major carbohydrate metabolism-regulating genes was closely correlated with carbohydrate content during seed maturation. Our results provide novel insights into the regulation of oil biosynthesis in B. napus seeds and highlights the coordination of gene expression and metabolism in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-018-0800-3DOI Listing

Publication Analysis

Top Keywords

oil biosynthesis
16
gene expression
12
seed maturation
12
fatty acid
12
transcriptome metabolome
8
brassica napus
8
expression profiles
8
napus seeds
8
content seed
8
seed embryos
8

Similar Publications

Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress.

J Pineal Res

March 2025

College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling, China.

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress.

View Article and Find Full Text PDF

Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear.

View Article and Find Full Text PDF

Dealing with oil spills is urgent, and bioaugmentation is a low-cost and environmentally friendly method. However, little research has been done on the remediation effect of bioaugmentation in oil-polluted environments with bottom seawater microorganisms. This work constructed the bottom seawater (S) group and surface seawater environment (T) group to study the oil degradation ability and the microbial community successions tendency with the function of integrated bacterial consortium.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.

View Article and Find Full Text PDF

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

Biopolymers

March 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!