Simvastatin Impairs the Inflammatory and Repair Phases of the Postinjury Skeletal Muscle Regeneration.

Biomed Res Int

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland.

Published: March 2019

Background: Recent clinical data have suggested that the chronic use of high-lipophilic statins impairs the regenerative capacity of skeletal muscle. Because this activity of statins is poorly understood, we aimed to investigate the effect of simvastatin (SIM) on postinjury myofibre regeneration.

Methods: The porcine model was used in this study. The animals were divided into two groups: nontreated (control; =24) and SIM-treated (40 mg/day; =24). On the 15th day (day 0) of the experiment, a bupivacaine hydrochloride- (BPVC-) induced muscle injury was established, and the animals were sacrificed in the following days after muscle injury. The degree of regeneration was assessed based on histopathological and immunohistochemical examinations. The presence and degree of extravasation, necrosis, and inflammation in the inflammatory phase were assessed, whereas the repair phase was evaluated based on the numbers of muscle precursor cells (MPCs), myotube and young myofibres.

Results: In the inflammatory phase, SIM increased the distribution and prolonged the period of extravasation, prolonged the duration of necrosis, and prolonged and enhanced the infiltration of inflammatory cells. In the repair phase, SIM delayed and prolonged the activity of MPCs, delayed myotube formation, and delayed and decreased the formation of young myofibres. Our results indicated that SIM did not improve blood vessel stabilization at the site of the injury, did not exert an anti-inflammatory effect, prolonged and enhanced the inflammatory response, and impaired MPC activity, differentiation, and fusion. Moreover, SIM appeared to reduce M1 macrophage activity, resulting in slower removal of necrotic debris and sustained necrosis.

Conclusion: This study shows that SIM negatively affects the inflammatory and repair phases of the postinjury muscle regeneration. These findings are unique, strengthen the available knowledge on the side effects of SIM, and provide evidence showing that statin therapy is associated with an increased risk of impairment of the regenerative capacity of muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6241344PMC
http://dx.doi.org/10.1155/2018/7617312DOI Listing

Publication Analysis

Top Keywords

inflammatory repair
8
repair phases
8
phases postinjury
8
skeletal muscle
8
muscle regeneration
8
regenerative capacity
8
muscle injury
8
inflammatory phase
8
repair phase
8
phase sim
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!