Motivation: The identification of functional sequence variations in regulatory DNA regions is one of the major challenges of modern genetics. Here, we report results of a combined multifactor analysis of properties characterizing functional sequence variants located in promoter regions of genes.
Results: We demonstrate that GC-content of the local sequence fragments and local DNA shape features play significant role in prioritization of functional variants and outscore features related to histone modifications, transcription factors binding sites, or evolutionary conservation descriptors. Those observations allowed us to build specialized machine learning classifier identifying functional single nucleotide polymorphisms within promoter regions-ShapeGTB. We compared our method with more general tools predicting pathogenicity of all non-coding variants. ShapeGTB outperformed them by a wide margin (average precision 0.93 vs. 0.47-0.55). On the external validation set based on ClinVar database it displayed worse performance but was still competitive with other methods (average precision 0.47 vs. 0.23-0.42). Such results suggest unique characteristics of mutations located within promoter regions and are a promising signal for the development of more accurate variant prioritization tools in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275119 | PMC |
http://dx.doi.org/10.7717/peerj.5742 | DOI Listing |
PLoS One
January 2025
DIADE, IRD, Cirad, University of Montpellier, Montpellier, France.
Motivation: Genotyping of bi-parental populations can be performed with low-coverage next-generation sequencing (LC-NGS). This allows the creation of highly saturated genetic maps at reasonable cost, precisely localized recombination breakpoints (i.e.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
Purpose: The purpose of this study was to investigate the contribution and natural progression of ABCA4 deep intronic variants (DIVs) among a Chinese Stargardt disease (STGD) cohort.
Methods: For unsolved STGD probands, DIVs in ABCA4 were detected by next-generation sequencing, and splicing effects were evaluated by in silico tools and validated through minigene experiments. Comprehensive ocular examinations, especially fundus changes, were carried out and analyzed.
Nucleic Acids Res
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFGut
January 2025
Barts Cancer Institute, Queen Mary University of London, London, UK
Background: The risk of developing advanced neoplasia (AN; colorectal cancer and/or high-grade dysplasia) in ulcerative colitis (UC) patients with a low-grade dysplasia (LGD) lesion is variable and difficult to predict. This is a major challenge for effective clinical management.
Objective: We aimed to provide accurate AN risk stratification in UC patients with LGD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!