The highly oxygen-sensitive hydrogen uptake (Hup) hydrogenase from forms part of a protein-based respiratory chain coupling hydrogen oxidation with organohalide reduction on the outside of the cell. The HupXSL proteins were previously shown to be synthesized and enzymatically active in . Here we examined the growth conditions that deliver active Hup enzyme that couples H oxidation to benzyl viologen (BV) reduction, and identified host factors important for this process. In a genetic background lacking the three main hydrogenases of we could show that additional deletion of genes necessary for selenocysteine biosynthesis resulted in inactive Hup enzyme, suggesting requirement of a formate dehydrogenase for Hup activity. Hup activity proved to be dependent on the presence of formate dehydrogenase (Fdh-H), which is typically associated with the H-evolving formate hydrogenlyase (FHL) complex in the cytoplasm. Further analyses revealed that heterologous Hup activity could be recovered if the genes encoding the ferredoxin-like electron-transfer protein HupX, as well as the related HycB small subunit of Fdh-H were also deleted. These findings indicated that the catalytic HupL and electron-transferring HupS subunits were sufficient for enzyme activity with BV. The presence of the HupX or HycB proteins in the absence of Fdh-H therefore appears to cause inactivation of the HupSL enzyme. This is possibly because HupX or HycB aided transfer of electrons to the quinone pool or other oxidoreductase complexes, thus maintaining the HupSL heterodimer in a continuously oxidized state causing its inactivation. This proposal was supported by the observation that growth under either aerobic or anaerobic respiratory conditions did not yield an active HupSL. These studies thus provide a system to understand the redox sensitivity of this heterologously synthesized hydrogenase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258894PMC
http://dx.doi.org/10.3389/fmicb.2018.02837DOI Listing

Publication Analysis

Top Keywords

hup activity
12
redox sensitivity
8
hup enzyme
8
formate dehydrogenase
8
hupx hycb
8
hup
6
insights redox
4
sensitivity hup-hydrogenase
4
hup-hydrogenase derived
4
derived studies
4

Similar Publications

Objectives: (1) To evaluate the potential of producing huperzine (Hup) and anticholinesterase (AChE) activities of nine native Lycopodiaceae species collected in Vietnam; (2) Isolation, identification and characterization of a novel fungus producing both HupA and HupB isolated from Lycopodium casuarinoides Spring.

Results: All methanolic extracts of nine plants showed AChE inhibition from 8.55 to 71.

View Article and Find Full Text PDF

Pharmacological Advancements of PRC2 in Cancer Therapy: A Narrative Review.

Life (Basel)

December 2024

Parrish Healthcare, 951 North Washington Ave., Titusville, FL 32796, USA.

Polycomb repressive complex 2 (PRC2) is known to regulate gene expression and chromatin structure as it methylates H3K27, resulting in gene silencing. Studies have shown that PRC2 has dual functions in oncogenesis that allow it to function as both an oncogene and a tumor suppressor. Because of this, nuanced strategies are necessary to promote or inhibit PRC2 activity therapeutically.

View Article and Find Full Text PDF

A computationally efficient anisotropic electrophysiological multiscale uterus model: From cell to organ and myometrium to abdominal surface.

Comput Methods Programs Biomed

December 2024

Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València (Ci2B), Valencia 46022, Spain; BJUT-UPV Joint Research Laboratory in Biomedical Engineering, Beijing, China. Electronic address:

Background And Objective: Preterm labor is a global problem affecting the health of newborns. Despite numerous studies reporting electrophysiological changes throughout pregnancy, the underlying mechanism that triggers labor remains unclear. Electrophysiological modeling can provide additional information to better understand the physiological transition from pregnancy to labor.

View Article and Find Full Text PDF

Uptake hydrogenase (Hup) recycles H2 formed by nitrogenase during nitrogen fixation, thereby preserving energy. Among root nodule bacteria, most rhizobial strains examined are Hup-, while only one Hup-  Frankia inoculum had been identified. Previous analyses had led to the identification of two different [NiFe] hydrogenase syntons.

View Article and Find Full Text PDF

Introduction: The role of complement system in late stage of IgA nephropathy (IgAN) remains unknown. We therefore investigated the effects of complement system on worsening kidney function in advanced (stage 4 CKD) IgAN.

Methods: Renal specimens of 69 IgAN patients who underwent renal biopsy during stage 4 CKD between 2010 and 2021, were stained using immunofluorescence (IF) and immunohistochemistry (IHC) for glomerular complement components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!