Bioremediation offers a sustainable approach for removal of polycyclic aromatic hydrocarbons (PAHs) from the environment; however, information regarding the microbial communities involved remains limited. In this study, microbial community dynamics and the abundance of the key gene (PAH-RHDα) encoding a ring hydroxylating dioxygenase involved in PAH degradation were examined during degradation of phenanthrene in a podzolic soil from the site of a former timber treatment facility. The 10,000-fold greater abundance of this gene associated with Gram-positive bacteria found in phenanthrene-amended soil compared to unamended soil indicated the likely role of Gram-positive bacteria in PAH degradation. In contrast, the abundance of the Gram-negative PAHs-RHDα gene was very low throughout the experiment. While phenanthrene induced increases in the abundance of a small number of OTUs from the Actinomycetales and Sphingomonadale, most of the remainder of the community remained stable. A single unclassified OTU from the family increased ~20-fold in relative abundance, reaching 32% of the total sequences in amended microcosms on day 7 of the experiment. The relative abundance of this same OTU increased 4.5-fold in unamended soils, and a similar pattern was observed for the second most abundant PAH-responsive OTU, classified into the genus. Furthermore, the relative abundance of both of these OTUs decreased substantially between days 7 and 17 in the phenanthrene-amended and control microcosms. This suggests that their opportunistic phenotype, in addition to likely PAH-degrading ability, was determinant in the vigorous growth of dominant PAH-responsive OTUs following phenanthrene amendment. This study provides new information on the temporal response of soil microbial communities to the presence and degradation of a significant environmental pollutant, and as such has the potential to inform the design of PAH bioremediation protocols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258822 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.02815 | DOI Listing |
Alzheimers Dement
December 2024
Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Background: Aging is a time-dependent deterioration of physiological functions that occurs in both humans and animals. Within the brain, aging cells gradually become dysfunctional through a complex interplay of intrinsic and extrinsic factors, ultimately leading to behavioral deficits and enhanced risk of neurodegenerative diseases such as Alzheimer's disease (AD). The characteristics of normal aging are distinct from those associated with age-related diseases and it is important to understand the processes that contribute to this pathological divergence.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Washington University School of Medicine, St. Louis, MO, USA.
Background: P-tau217 has emerged as a compelling alternative to long-established p-tau181 to accurately measure tau modifications in biofluids in response to brain Abeta and tau deposition in Alzheimer's disease (AD). Understanding the specificity and significance of p-tau217 changes over AD stages is critical to interpret its potential response to treatments against Abeta and tau aggregation.
Methods: We measured p-tau217 phosphorylation by mass spectrometry.
Alzheimers Dement
December 2024
San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA, USA.
Background: Effective disease-modifying regimens for Alzheimer's Disease (AD) remain lacking due to insufficient understanding of its pathogenic drivers. It was shown previously that upregulation of the calcium-sensing receptor (CaSR), an excitatory family C GPCR, induces neurodegeneration by interfering with the inhibitory γ-aminobutyric acid (GABA) signaling following acute brain injuries (Ann_Clin_Transl_Neurol, 1:851-66). Herein, we determined whether CaSR overexpression is causally associated with the AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University, Baltimore, MD, USA.
Background: By 2050 the number of Alzheimer's Disease (AD) patients is projected to exceed 150 million worldwide. AD is an incurable, insufficiently understood, and devastating neurodegenerative disease, with high patient heterogeneity in terms of progression, clinical manifestation (including neuropsychiatric symptoms, NPS) and, importantly, responsiveness to treatment options.[1] In the last 20 years, 98% of clinical trials for AD have failed, highlighting the urgent need to drastically change pre-clinical research to develop better predictors of drug safety and effectiveness.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder leading to dementia. The existence of individuals who remain cognitively intact despite presenting histopathological signs of AD, here referred to as "Non-demented with AD neuropathology" (NDAN), suggests that some mechanisms are triggered to resist cognitive impairment. These individuals are distinguished by the presence of highly phagocytic microglia capable of clearing damaged synapses near plaques, mitigating further damage to axons and dendrites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!