Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281606PMC
http://dx.doi.org/10.1038/s41598-018-35948-6DOI Listing

Publication Analysis

Top Keywords

stress fibers
32
stress fiber
16
stress
12
actomyosin bundles
12
fibers
8
bundles stress
8
cnn3
8
fiber assembly
8
contractility stress
8
fiber network
8

Similar Publications

Pediatric Sleep Quality and Parental Stress in Neuromuscular Disorders: Descriptive Analytical Study.

Asian Pac Isl Nurs J

January 2025

Nursing Care Research Center, Clinical Sciences Institute, Nursing Faculty, Baqiyatallah University of Medical Sciences, Vanak Square, Tehran, Iran, 98 9127297199.

Background: Neuromuscular disorders (NMDs) constitute a heterogeneous group of disorders that affect motor neurons, neuromuscular junctions, and muscle fibers, resulting in symptoms such as muscle weakness, fatigue, and reduced mobility. These conditions significantly affect patients' quality of life and impose a substantial burden on caregivers. Spinal muscular atrophy (SMA) is a relatively common NMD in children that presents in various types with varying degrees of severity.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the collagen fiber structure of the subcutaneous fascia, a connective tissue layer between the skin and epimysium.

Methods: Fascia samples with varying extensibility were examined using biochemical and microscopic methods.

Results: Loose fascia, the more extensible type, displayed sparsely distributed collagen fibers, while dense fascia showed tightly packed collagen fiber bundles.

View Article and Find Full Text PDF

This study aimed to investigate the changes induced by the culture system and the effect of ascorbic acid and resveratrol on collagen fibers, stromal cells, follicle growth and survival, as well as antioxidant enzyme activity in cultured bovine ovarian tissues. In experiment 1, bovine ovarian fragments were cultured in α-minimum essential medium (α-MEM) for 6 days. Before and after culturing, the fragments were fixed and processed to assess follicular morphology and diameters, stromal cell survival, collagen fibers, and glycosaminoglycans (GAGs).

View Article and Find Full Text PDF

Background: A decline in muscle mass and function can impact the health, disease vulnerability, and mortality of older adults. Prolonged use of high doses of glucocorticoids, such as dexamethasone (DEX), can cause muscle wasting and reduced strength. Ginsenoside Rc (gRc) has been shown to protect muscles by activating the PGC-1α pathway and improving mitochondrial function.

View Article and Find Full Text PDF

The Design, Synthesis, and Characterization of Photochromic and Mechanochromic Functional Fibers.

Macromol Rapid Commun

January 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China.

Mechanically responsive polymer materials have garnered significant interest due to their unique ability to respond to external forces, leading to groundbreaking applications in visual stress mapping and damage detection. However, their use in fibers remains relatively unexplored. In this study, a mechanoresponsive polymer is synthesized by incorporating a spiropyran (SP) mechanophore into a polyurethane backbone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!