Background: Metformin reduces plasma glucose and has been shown to increase glucagon-like peptide 1 (GLP-1) secretion. Whether this is a direct action of metformin on GLP-1 release, and whether some of the glucose-lowering effect of metformin occurs due to GLP-1 release, is unknown. The current study investigated metformin-induced GLP-1 secretion and its contribution to the overall glucose-lowering effect of metformin and underlying mechanisms in patients with type 2 diabetes.
Methods: Twelve patients with type 2 diabetes were included in this placebo-controlled, double-blinded study. On 4 separate days, the patients received metformin (1,500 mg) or placebo suspended in a liquid meal, with subsequent i.v. infusion of the GLP-1 receptor antagonist exendin9-39 (Ex9-39) or saline. During 240 minutes, blood was sampled. The direct effect of metformin on GLP-1 secretion was tested ex vivo in human ileal and colonic tissue with and without dorsomorphin-induced inhibiting of the AMPK activity.
Results: Metformin increased postprandial GLP-1 secretion compared with placebo (P = 0.014), and the postprandial glucose excursions were significantly smaller after metformin + saline compared with metformin + Ex9-39 (P = 0.004). Ex vivo metformin acutely increased GLP-1 secretion (colonic tissue, P < 0.01; ileal tissue, P < 0.05), but the effect was abolished by inhibition of AMPK activity.
Conclusions: Metformin has a direct and AMPK-dependent effect on GLP-1-secreting L cells and increases postprandial GLP-1 secretion, which seems to contribute to metformin's glucose-lowering effect and mode of action.
Trial Registration: NCT02050074 (https://clinicaltrials.gov/ct2/show/NCT02050074).
Funding: This study received grants from the A.P. Møller Foundation, the Novo Nordisk Foundation, the Danish Medical Association research grant, the Australian Research Council, the National Health and Medical Research Council, and Pfizer Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328020 | PMC |
http://dx.doi.org/10.1172/jci.insight.93936 | DOI Listing |
Alzheimers Dement
December 2024
iCBR - Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Coimbra, Portugal; Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Coimbra, Portugal; Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Coimbra, Portugal.
Background: Cardiometabolic diseases, such as type 2 diabetes, hypertension, dyslipidemia or obesity, constitute major causes of mortality and morbidity worldwide, especially among middle-aged individuals. The increasing incidence and association with aging and lifestyle, render the cardiometabolic diseases a societal concern. This is further reinforced by their association with an increased risk of cognitive impairment and neurodegenerative diseases (namely dementia and Alzheimer's disease (AD)).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.
View Article and Find Full Text PDFFood Res Int
January 2025
Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France. Electronic address:
Dietary protein reduces energy intake in following meals by signaling directly or indirectly to the brain. We recently observed differences in plasma amino acid kinetics and intra-gastric behavior between micellar casein (MC) and sodium caseinate (SC) in pigs, two factors that impact food intake. Our objective was to clarify whether the supramolecular structure of casein, given as a preload to pigs, impacts on subsequent food intake.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China. Electronic address:
Aims: Gestational diabetes mellitus (GDM) provides offspring with a hyper-metabolic intrauterine microenvironment. In this study, we aimed to identify key differential microRNAs in GDM-derived exosomes and explore the potential mechanisms of abnormal embryonic development of islets in offspring.
Main Methods: Exosomes were extracted from umbilical vein blood of GDM and non-GDM (NGDM) parturients for microRNA sequencing.
Cell Metab
January 2025
Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, CT 06520, USA. Electronic address:
Incretin receptor agonists have been effective in combatting obesity and diabetes. While the body of knowledge regarding the signaling mechanisms of glucagon-like peptide 1 (GLP-1) receptor agonists is ever-growing, glucose-dependent insulinotropic polypeptide receptor (GIPR) agonists are less understood. The previewed papers offer insight into the impact of adipose GIPR on energy and weight homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!