Background: Acute respiratory distress syndrome (ARDS) is a prevalent disease with significant mortality for which no effective pharmacologic therapy exists. Low-dose inhaled carbon monoxide (iCO) confers cytoprotection in preclinical models of sepsis and ARDS.

Methods: We conducted a phase I dose escalation trial to assess feasibility and safety of low-dose iCO administration in patients with sepsis-induced ARDS. Twelve participants were randomized to iCO or placebo air 2:1 in two cohorts. Four subjects each were administered iCO (100 ppm in cohort 1 or 200 ppm in cohort 2) or placebo for 90 minutes for up to 5 consecutive days. Primary outcomes included the incidence of carboxyhemoglobin (COHb) level ≥10%, prespecified administration-associated adverse events (AEs), and severe adverse events (SAEs). Secondary endpoints included the accuracy of the Coburn-Forster-Kane (CFK) equation to predict COHb levels, biomarker levels, and clinical outcomes.

Results: No participants exceeded a COHb level of 10%, and there were no administration-associated AEs or study-related SAEs. CO-treated participants had a significant increase in COHb (3.48% ± 0.7% [cohort 1]; 4.9% ± 0.28% [cohort 2]) compared with placebo-treated subjects (1.97% ± 0.39%). The CFK equation was highly accurate at predicting COHb levels, particularly in cohort 2 (R2 = 0.9205; P < 0.0001). Circulating mitochondrial DNA levels were reduced in iCO-treated participants compared with placebo-treated subjects.

Conclusion: Precise administration of low-dose iCO is feasible, well-tolerated, and appears to be safe in patients with sepsis-induced ARDS. Excellent agreement between predicted and observed COHb should ensure that COHb levels remain in the target range during future efficacy trials.

Trial Registration: ClinicalTrials.gov NCT02425579.

Funding: NIH grants P01HL108801, KL2TR002385, K08HL130557, and K08GM102695.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328240PMC
http://dx.doi.org/10.1172/jci.insight.124039DOI Listing

Publication Analysis

Top Keywords

sepsis-induced ards
12
cohb levels
12
low-dose inhaled
8
inhaled carbon
8
carbon monoxide
8
low-dose ico
8
patients sepsis-induced
8
ppm cohort
8
cohb level
8
adverse events
8

Similar Publications

Background: Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.

View Article and Find Full Text PDF

Introduction: Sepsis-induced acute lung injury (ALI), a critical sequela of systemic inflammation, often progresses to acute respiratory distress syndrome, conferring high mortality. Although UMI-77 has demonstrated efficacy in mitigating lung injury in sepsis, the molecular mechanisms underlying its action have not yet been fully elucidated.

Methods: This study aimed to delineate the mechanism by which UMI-77 counteracts sepsis-induced ALI using comprehensive transcriptomic and metabolomic analyses.

View Article and Find Full Text PDF

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI.

View Article and Find Full Text PDF

Lung immune incompetency after mild peritoneal sepsis and its partial restoration by type 1 interferon: a mouse model study.

Intensive Care Med Exp

December 2024

Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.

Background: Sepsis is commonly associated with acute respiratory distress syndrome (ARDS). Although the exaggerated inflammation may damage intact lung tissues, a percentage of patients with ARDS are reportedly immunocompromised, with worse outcomes. Herein, using a murine sepsis model, time-course immune reprogramming after sepsis was evaluated to explore whether the host is immunocompromised.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!