Hemagglutinin (HA) stalk-reactive antibodies are the basis of several current "one-shot" universal influenza vaccine efforts because they protect against a wide spectrum of influenza virus strains. The appreciated mechanism of protection by HA stalk-reactive antibodies is to inhibit HA stalk reconfiguration, blocking viral fusion and entry. This study shows that HA stalk-reactive antibodies also inhibit neuraminidase (NA) enzymatic activity, prohibiting viral egress. NA inhibition (NI) was evident for an attached substrate but not for unattached small-molecule cleavage of sialic acid. This finding suggests that the antibodies inhibit NA enzymatic activity through steric hindrance, thus limiting NA access to sialic acids when adjacent to HA on whole virions. Consistently, F(ab') fragments that occupied reduced area without loss of avidity or disrupted HA/NA interactions showed significantly reduced NI activity. Notably, HA stalk-binding antibodies lacking NI activity were unable to neutralize viral infection via microneutralization assays. This work suggests that NI activity is an important component of protection mediated by HA stalk-reactive antibodies. This study reports a new mechanism of protection mediated by influenza hemagglutinin stalk-reactive antibodies, i.e., inhibition of neuraminidase activity by steric hindrance, blocking access of neuraminidase to sialic acids when it abuts hemagglutinin on whole virions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364013 | PMC |
http://dx.doi.org/10.1128/JVI.01526-18 | DOI Listing |
mBio
December 2024
Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, California, USA.
Frequent recent spillovers of subtype H5N1 clade 2.3.4.
View Article and Find Full Text PDFVaccine
January 2023
Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, China. Electronic address:
Current vaccine formulations elicit a recall immune response against viruses by targeting epitopes on the globular head of hemagglutinin (HA), and stalk-reactive antibodies are rarely found. However, stalk-specific memory B-cell expansion after influenza vaccination is poorly understood. In this study, B cells were isolated from individuals immunized with seasonal tetravalent influenza vaccines at days 0 and 28 for H7N9 stimulation in vitro.
View Article and Find Full Text PDFJ Virol
January 2023
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Most human influenza vaccine antigens are produced in fertilized chicken eggs. Recent H3N2 egg-based vaccine antigens have limited effectiveness, partially due to egg-adaptive substitutions that alter the antigenicity of the hemagglutinin (HA) protein. The nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) vaccine platform is a promising alternative for egg-based influenza vaccines because mRNA-LNP-derived antigens are not subject to adaptive pressures that arise during the production of antigens in chicken eggs.
View Article and Find Full Text PDFHum Vaccin Immunother
November 2022
Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
The very first influenza virus exposure in a human during infancy is known to imprint the host immune system. However, it is unclear how the memory B cells that first target virus epitopes affect antibody response to the stalk of hemagglutinin (HA) domain of influenza virus. Our study is designed to measure the cross-reactivity of antibodies induced by inactivated H7N9 virus using isolated human peripheral blood B cells.
View Article and Find Full Text PDFPLoS One
May 2021
Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!