A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

EGCG protects cardiomyocytes against hypoxia-reperfusion injury through inhibition of OMA1 activation. | LitMetric

Mitochondria are important for energy production and cardiomyocyte homeostasis. OMA1, a metalloendopeptidase, initiates the proteolytic process of the fusion-allowing protein OPA1, to deteriorate mitochondrial structure and function. In this study, mouse embryonic fibroblasts (MEFs) and neonatal mouse cardiomyocytes (NMCMs) subjected to hypoxia-reperfusion injury (HRI) and/or HO were used to mimic oxidative stress in the heart following ischemia-reperfusion injury (IRI). experiments demonstrated that HRI or stimulation with HO induced self-cleavage of OMA1 and the subsequent conversion of OPA1 from its long form to its short form, leading to mitochondrial fragmentation, cytochrome c release and apoptosis. By using Molecular Operating Environment (MOE) software to simulate the binding interaction of 2295 phytochemicals against OMA1, epigallocatechin gallate (EGCG) and betanin were selected as candidates of OMA1 inhibitor. We found that EGCG directly interacted with OMA1 and potently inhibited self-cleavage of OMA1, leading to attenuated OPA1 cleavage. This study, therefore, suggests to use OMA1 inhibition induced by EGCG to treat cardiac IRI.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.220871DOI Listing

Publication Analysis

Top Keywords

hypoxia-reperfusion injury
8
oma1
8
self-cleavage oma1
8
egcg
4
egcg protects
4
protects cardiomyocytes
4
cardiomyocytes hypoxia-reperfusion
4
injury inhibition
4
inhibition oma1
4
oma1 activation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!