Many discoveries in cell biology rely on making specific proteins visible within their native cellular environment. There are various genetically encoded tags, such as fluorescent proteins, developed for fluorescence microscopy (FM). However, there are almost no genetically encoded tags that enable cellular proteins to be observed by both FM and electron microscopy (EM). Herein, we describe a technology for labeling proteins with diverse chemical reporters, including bright organic fluorophores for FM and electron-dense nanoparticles for EM. Our technology uses versatile interacting peptide (VIP) tags, a class of genetically encoded tag. We present VIPER, which consists of a coiled-coil heterodimer formed between the genetic tag, CoilE, and a probe-labeled peptide, CoilR. Using confocal FM, we demonstrate that VIPER can be used to highlight subcellular structures or to image receptor-mediated iron uptake. Additionally, we used VIPER to image the iron uptake machinery by correlative light and EM (CLEM). VIPER compared favorably with immunolabeling for imaging proteins by CLEM, and is an enabling technology for protein targets that cannot be immunolabeled. VIPER is a versatile peptide tag that can be used to label and track proteins with diverse chemical reporters observable by both FM and EM instrumentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6304991PMC
http://dx.doi.org/10.1073/pnas.1808626115DOI Listing

Publication Analysis

Top Keywords

genetically encoded
16
peptide tag
8
electron microscopy
8
encoded tags
8
proteins diverse
8
diverse chemical
8
chemical reporters
8
iron uptake
8
viper
6
proteins
6

Similar Publications

Nup107 contributes to the maternal to zygotic transition by preventing the premature nuclear export of pri-miRNA 427.

Development

January 2025

Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.

View Article and Find Full Text PDF

Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.

Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.

View Article and Find Full Text PDF

This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics.

View Article and Find Full Text PDF

The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn transporters: the 14-member ZIP/SLC39 family, facilitating Zn influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/ zinc transporter, and suggested association of two homozygous frameshift variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy.

View Article and Find Full Text PDF

Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae.

ISME J

January 2025

Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, 13288, Marseille Cedex 9, France.

The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!