Chromosomal translocations and semen quality: A study on 144 male translocation carriers.

Reprod Biomed Online

AP-HP, Reproductive Biology Unit, Paris-Sud University, Paris-Saclay University, Antoine Béclère Hospital, Clamart 92140, France.

Published: January 2019

Research Question: Chromosomal translocations are known genetic causes of male infertility. Are certain translocations or chromosomal regions more directly associated with sperm defects? Is there a threshold of sperm impairment that can be relevant for detection of translocations?

Design: This is a monocentric retrospective observational study covering a 10-year period. Eighty-one patients carrying a reciprocal translocation (RCT) and 63 carrying a Robertsonian translocation (ROBT) were compared with 105 fertile patients. Semen quality before and after sperm migration was compared. The aims were to define whether a threshold based on sperm analysis could be proposed for detection of translocations and to identify whether some redundant chromosomal regions might be associated with sperm quality defects.

Results: The number of progressive spermatozoa retrieved after sperm preparation (NPS-ASP) was altered in both RCT and ROBT carriers compared with controls, with a stronger alteration in ROBT. Based on the NPS-ASP results in this large group of translocation carriers, a relatively robust threshold, fixed at less than 5 million, may be proposed for detection of translocations. The alteration of NPS-ASP was independent of the chromosome involved in ROBT, while in RCT, four redundant chromosomal regions (1q21, 6p21, 16q21, 17q11.2) were associated with poor or very poor NPS-ASP.

Conclusions: The NPS-ASP appears to be a good parameter to assess sperm function and would be a useful tool to detect chromosomal translocations. Four redundant regions have been identified on four chromosomes, suggesting that they may contain genes of interest to study sperm functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2018.10.003DOI Listing

Publication Analysis

Top Keywords

chromosomal translocations
12
chromosomal regions
12
semen quality
8
translocation carriers
8
sperm
8
associated sperm
8
proposed detection
8
detection translocations
8
redundant chromosomal
8
chromosomal
6

Similar Publications

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.

View Article and Find Full Text PDF

Neo-enhancers in T-cell acute lymphoblastic Leukaemia (T-ALL) and beyond.

Int J Cancer

January 2025

Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.

T-cell acute lymphoblastic leukaemia (T-ALL) is a rare aggressive haematological malignancy characterised by the clonal expansion of immature T-cell precursors. It accounts for 15% of paediatric and 25% of adult ALL. T-ALL is associated with the overexpression of major transcription factors (TLX1/3, TAL1, HOXA) that drive specific transcriptional programmes and constitute the molecular classifying subgroups of T-ALL.

View Article and Find Full Text PDF

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Background: Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.

Methods: From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!