Surgery cancellations waste scarce operative resources and hinder patients' access to operative services. In this study, the Wilcoxon and chi-square tests were used for predictor selection, and three machine learning models - random forest, support vector machine, and XGBoost - were used for the identification of surgeries with high risks of cancellation. The optimal performances of the identification models were as follows: sensitivity - 0.615; specificity - 0.957; positive predictive value - 0.454; negative predictive value - 0.904; accuracy - 0.647; and area under the receiver operating characteristic curve - 0.682. Of the three models, the random forest model achieved the best performance. Thus, the effective identification of surgeries with high risks of cancellation is feasible with stable performance. Models and sampling methods significantly affect the performance of identification. This study is a new application of machine learning for the identification of surgeries with high risks of cancellation and facilitation of surgery resource management.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1460458218813602DOI Listing

Publication Analysis

Top Keywords

identification surgeries
16
surgeries high
16
high risks
16
risks cancellation
16
machine learning
12
learning identification
8
models random
8
random forest
8
identification
6
machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!