Homologous Recombination: To Fork and Beyond.

Genes (Basel)

Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, 41092 Seville, Spain.

Published: December 2018

Accurate completion of genome duplication is threatened by multiple factors that hamper the advance and stability of the replication forks. Cells need to tolerate many of these blocking lesions to timely complete DNA replication, postponing their repair for later. This process of lesion bypass during DNA damage tolerance can lead to the accumulation of single-strand DNA (ssDNA) fragments behind the fork, which have to be filled in before chromosome segregation. Homologous recombination plays essential roles both at and behind the fork, through fork protection/lesion bypass and post-replicative ssDNA filling processes, respectively. I review here our current knowledge about the recombination mechanisms that operate at and behind the fork in eukaryotes, and how these mechanisms are controlled to prevent unscheduled and toxic recombination intermediates. A unifying model to integrate these mechanisms in a dynamic, replication fork-associated process is proposed from yeast results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316604PMC
http://dx.doi.org/10.3390/genes9120603DOI Listing

Publication Analysis

Top Keywords

homologous recombination
8
fork
5
recombination fork
4
fork accurate
4
accurate completion
4
completion genome
4
genome duplication
4
duplication threatened
4
threatened multiple
4
multiple factors
4

Similar Publications

BRCA1 deficiency is observed in approximately 25% of triple-negative breast cancer (TNBC). BRCA1, a key player of homologous recombination (HR) repair, is also involved in stalled DNA replication fork protection and repair. Here, we investigated the sensitivity of BRCA1-deficient TNBC models to the frequently used replication chain terminator gemcitabine, which does not directly induce DNA breaks.

View Article and Find Full Text PDF

Comprehensive evaluation of genomic and functional assays for homologous recombination deficiency with high-grade epithelial ovarian cancer: Platinum sensitivity and prognosis.

Int J Gynecol Cancer

January 2025

Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China. Electronic address:

Objective: Homologous recombination deficiency assays, guiding treatment of poly (adenosine diphosphate ribose) polymerase inhibitors, are increasingly applied in clinics. This study aimed to evaluate the predictive performance of homologous recombination deficiency status at genomic and functional perspective on the efficacy of platinum-based chemotherapy in ovarian cancer.

Methods: Between 2016 and 2019, 134 patients with high-grade ovarian cancer were retrospectively analyzed.

View Article and Find Full Text PDF

Background: We present a systematic review and meta-analysis of randomized clinical trials (RCTs) with PARPi either as monotherapy or in combination with an androgen receptor-targeted agent (ARTA) in first- and second-line settings.

Methods: Primary endpoints are radiographic progression free survival (rPFS) and overall survival (OS) in patients with mCRPC and either unselected, homologous recombination repair wild-type (HRR-), homologous recombination repair mutated (HRR+) or with BRCA1, BRCA2, or ATM mutation. The effect of PARPi + ARTA in the second-line setting is also explored.

View Article and Find Full Text PDF

Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

Article Synopsis
  • Sir2 is a histone deacetylase that helps maintain the stability of ribosomal RNA genes in budding yeast by preventing DNA breaks from leading to changes in rDNA copy number.
  • It does this by suppressing transcription near issues that arise during DNA replication, which can otherwise provoke double-strand breaks (DSBs) and subsequent DNA repair processes.
  • When Sir2 is absent, increased transcription can lead to DSBs, resulting in unstable rDNA copy numbers and the formation of extrachromosomal DNA, highlighting the importance of Sir2 in maintaining rDNA integrity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!