Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drought is the most significant environmental stress for agricultural production worldwide, and tremendous efforts have been made to improve crop yield under the increasing water scarcity. Transcription factors are major players in the regulation of water stress-related genes in plants. Recently, different MYB transcription factors were characterized for their involvement in drought response. A sugarcane R2R3-MYB gene (ScMYBAS1) and its four alternative forms of transcript (ScMYAS1-2, ScMYBAS1-3, ScMYBAS1-4 and ScMYBAS1-5) were identified in this study. The subcellular localization, in Nicotiniana benthamiana, of the TFs fused in frame with GFP revealed that ScMYBAS1-2-GFP and ScMYBAS1-3-GFP were observed in the nucleus. The overexpression of ScMYBAS1-2 and ScMYBAS1-3 spliced transcripts in rice promoted change in plant growth under both well-watered and drought conditions. The ScMYBAS1-2 and ScMYBAS1-3 transgenic lines revealed a higher relative water content (RWC) compared to the wild type before maximum stress under drought conditions. The ScMYBAS1-2 transgenic lines showed a reduction in biomass (total dry weight). Conversely, ScMYBAS1-3 showed an increased biomass (total dry weight) relative to the wild-type. The overexpression of ScMYBAS1-3 in rice transgenic lines showed involvement with drought tolerance and biomass and, for this reason, was considered a good target for plant transformation, particularly for use in developing genotypes with drought tolerance and biomass accumulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281192 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207534 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!