: Flexibility and strength are compromised in pronated feet, which could in turn lead to alteration of the dynamic balance and muscle activity in the lower extremities. This study aimed to analyze the effects of selective tibialis posterior strengthening and iliopsoas stretching on navicular drop, dynamic balance, and lower limb muscle activity in young adults with pronated feet. : Twenty-eight participants with pronated feet were randomly assigned to either the stretching and strengthening group ( = 14) or the conventional exercise group ( = 14). The stretching and strengthening group performed tibialis posterior strengthening exercises and iliopsoas stretching three times a week for 6 weeks in addition to the conventional towel curl exercises. The conventional exercise group performed towel curl exercises only. Navicular drop, dynamic balance, and lower limb muscle activity were assessed at baseline and post-intervention. A mixed model analysis of variance was performed to test the study hypothesis. : Significant group effects for the activity of tibialis anterior ( = 0.003) and abductor hallucis muscle ( = 0.010), as well as for the posterolateral ( = 0.036) and composite reach scores ( = 0.018), were detected. Significant group × time interactions were observed for naviculardrop ( < 0.001), all dynamic balance components ( < 0.001), and the activity of tibialis anterior ( < 0.001) and abductor hallucis ( < 0.001). : This study demonstrated that inclusion of selective tibialis posterior strengthening and iliopsoas stretching in addition to the conventional towel curl exercise program could improve important clinical outcomes, such as navicular drop, muscle activity, and dynamic balance in flatfeet.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00913847.2018.1553466DOI Listing

Publication Analysis

Top Keywords

dynamic balance
16
muscle activity
16
pronated feet
16
tibialis posterior
12
navicular drop
12
drop dynamic
12
balance lower
12
lower limb
12
limb muscle
12
effects selective
8

Similar Publications

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.

View Article and Find Full Text PDF

Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.

View Article and Find Full Text PDF

In the face of diminishing economic margins, dairy farmers globally are compelled to maintain economic competitiveness. Benchmarking emerges as a strategic tool to establish new, achievable improvement objectives that balance ambition with practicality. This typically requires integrating diverse data sources, such as feed, milk production, diet, and market prices.

View Article and Find Full Text PDF

Reactive oxygen, nitrogen and sulfur species (RONSS) collectively encompasses a variety of energetically dynamic entities that emerge as inherent characteristics of aerobic life. This broad category includes reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). A conundrum arises from the indispensable role of RONSS in redox signalling, while its overproduction in the mitochondria poses deleterious effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!