Traumatic brain injuries introduce functional and structural circuit deficits that must be repaired for an organism to regain function. We developed an injury model in which Xenopus laevis tadpoles are given a penetrating stab wound that damages the optic tectal circuit and impairs visuomotor behavior. In tadpoles, as in other systems, injury induces neurogenesis. The newly generated neurons are thought to integrate into the existing circuit; however, whether they integrate via the same mechanisms that govern normal neuronal maturation during development is not understood. Development of the functional visuomotor circuit in Xenopus is driven by sensory activity. We hypothesized that enhanced visual experience would improve recovery from injury by facilitating integration of newly generated neurons into the tectal circuit. We labeled newly generated neurons in the injured tectum by green fluorescent protein expression and examined their circuit integration using electrophysiology and in vivo imaging. Providing animals with brief bouts of enhanced visual experience starting 24 h after injury increased synaptogenesis and circuit integration of new neurons and facilitated behavioral recovery. To investigate mechanisms of neuronal integration and behavioral recovery after injury, we interfered with N-methyl-d-aspartate (NMDA) receptor function. Ifenprodil, which blocks GluN2B-containing NMDA receptors, impaired dendritic arbor elaboration. GluN2B blockade inhibited functional integration of neurons generated in response to injury and prevented behavioral recovery. Furthermore, tectal GluN2B knockdown blocked the beneficial effects of enhanced visual experience on functional plasticity and behavioral recovery. We conclude that visual experience-mediated rehabilitation of the injured tectal circuit occurs by GluN2B-containing NMDA receptor-dependent integration of newly generated neurons. NEW & NOTEWORTHY Recovery from brain injury is difficult in most systems. The study of regenerative animal models that are capable of injury repair can provide insight into cellular and circuit mechanisms underlying repair. Using Xenopus tadpoles, we show enhanced sensory experience rehabilitates the injured visual circuit and that this experience-dependent recovery depends on N-methyl-d-aspartate receptor function. Understanding the mechanisms of rehabilitation in this system may facilitate recovery in brain regions and systems where repair is currently impossible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383664PMC
http://dx.doi.org/10.1152/jn.00664.2018DOI Listing

Publication Analysis

Top Keywords

enhanced visual
16
visual experience
16
newly generated
16
generated neurons
16
behavioral recovery
16
tectal circuit
12
circuit
10
experience rehabilitates
8
rehabilitates injured
8
xenopus tadpoles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!