Simple and accurate isochoric differential scanning calorimetry measurements: phase transitions for pure fluids and mixtures in nanopores.

Phys Chem Chem Phys

Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071-2000, USA.

Published: December 2018

Various types of nanopores are encountered in many different engineering and science applications. Due to incomplete understanding of the phase behavior of fluids in nanosize confined space, the improvement of such applications has been largely based on experience and empirical approaches. Therefore, experimental studies on the phase behavior of confined fluids that are simple but accurate are still urgently needed. We recently developed a new isochoric procedure using a Differential Scanning Calorimeter (DSC) to measure the onset of vapor-liquid phase transitions, which has been successfully used in experiments measuring the vapor pressures of pure substances and the dew points of a bulk mixture in the absence of nanopores [Qiu et al., Phys. Chem. Chem. Phys., 2018, 20, 26241-26248]. It is the purpose of this work to extend the new method to confined fluids. To demonstrate the superior ability of the new method, we measure the capillary condensation of CO2 and the dew points of a binary methane/ethane gas mixture confined in SBA-15 with different pore diameters.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp06691dDOI Listing

Publication Analysis

Top Keywords

simple accurate
8
differential scanning
8
phase transitions
8
phase behavior
8
confined fluids
8
dew points
8
accurate isochoric
4
isochoric differential
4
scanning calorimetry
4
calorimetry measurements
4

Similar Publications

ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.

View Article and Find Full Text PDF

A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:

Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular photonic crystal hydrogel biosensor with macroporous structures for naked-eye visual detection of cholesterol.

Carbohydr Polym

March 2025

College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:

Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.

View Article and Find Full Text PDF

Background: A variety of clinically important benchmarks of success (CIBS) have been defined for total shoulder arthroplasty (TSA) to quantify success. However, it is unclear how the preoperative status of the patient influences their likelihood of achieving each CIBS.

Questions/purposes: (1) What proportion of patients achieve commonly used CIBS after TSA? (2) Is there a relationship between a patients' preoperative function and their probability of achieving different CIBS? (3) Does there exist preoperative ranges for each outcome measure that are associated with greater achievement of CIBS?

Methods: We retrospectively queried a multicenter shoulder arthroplasty database for primary anatomic TSA (aTSA) and reverse TSA (rTSA).

View Article and Find Full Text PDF

A novel dual-wavelength ultrahigh performance liquid chromatography (UHPLC) fingerprint was established, 56 common peaks were confirmed and attributed to the source of the medicinal materials, and 13 chromatographic peaks of them were identified by UHPLC quadrupole time-of-flight (Q-TOF)-MS/MS and UHPLC-UV method. Furthermore, a simple and sensitive HPLC-quadrupole trap (Q-TRAP)-MS/MS was developed for the simultaneous determination of 16 active components with electrospray ionization (ESI) source switching between positive and negative modes in a single run. The above two methods were successfully applied for the quality evaluation of Guanxinjing capsule (GXJC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!