Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-assembled, porous coordination cages with a functional interior find application in controlled guest inclusion/release, drug delivery, separation processes, and catalysis. However, only few studies exist that describe their utilization for the development of self-assembled materials based on their 3-dimensional shape and external functionalization. Here, dodecyl chain-containing, acridone-based ligands (L) and shape-complementary phenanthrene-derived ligands (L) are shown to self-assemble to heteroleptic coordination cages cis-[Pd(L)(L)] acting as a gemini amphiphile (CGA-1; Cage-based Gemini Amphiphile-1). Owing to their anisotropic decoration with short polar and long nonpolar side chains, the cationic cages were found to assemble into vesicles with diameters larger than 100 nm in suitable polar solvents, visualized by cryo-TEM and Liquid-Cell Transmission Electron Microscopy (LC-TEM). LC-TEM reveals that these vesicles aggregate into chains and necklaces via long-range interactions. In addition, the cages show a rarely described ability to stabilize oil-in-oil emulsions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b10991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!