A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. | LitMetric

Optic atrophy 1 (OPA1)-related mitochondrial fusion and mitophagy are vital to sustain mitochondrial homeostasis under stress conditions. However, no study has confirmed whether OPA1-related mitochondrial fusion/mitophagy is activated by melatonin and, consequently, attenuates cardiomyocyte death and mitochondrial stress in the setting of cardiac ischemia-reperfusion (I/R) injury. Our results indicated that OPA1, mitochondrial fusion, and mitophagy were significantly repressed by I/R injury, accompanied by infarction area expansion, heart dysfunction, myocardial inflammation, and cardiomyocyte oxidative stress. However, melatonin treatment maintained myocardial function and cardiomyocyte viability, and these effects were highly dependent on OPA1-related mitochondrial fusion/mitophagy. At the molecular level, OPA1-related mitochondrial fusion/mitophagy, which was normalized by melatonin, substantially rectified the excessive mitochondrial fission, promoted mitochondria energy metabolism, sustained mitochondrial function, and blocked cardiomyocyte caspase-9-involved mitochondrial apoptosis. However, genetic approaches with a cardiac-specific knockout of OPA1 abolished the beneficial effects of melatonin on cardiomyocyte survival and mitochondrial homeostasis in vivo and in vitro. Furthermore, we demonstrated that melatonin affected OPA1 stabilization via the AMPK signaling pathway and that blockade of AMPK repressed OPA1 expression and compromised the cardioprotective action of melatonin. Overall, our results confirm that OPA1-related mitochondrial fusion/mitophagy is actually modulated by melatonin in the setting of cardiac I/R injury. Moreover, manipulation of the AMPK-OPA1-mitochondrial fusion/mitophagy axis via melatonin may be a novel therapeutic approach to reduce cardiac I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12542DOI Listing

Publication Analysis

Top Keywords

mitochondrial fusion/mitophagy
20
opa1-related mitochondrial
20
i/r injury
16
mitochondrial
13
melatonin
9
mitochondrial fusion
8
fusion mitophagy
8
mitochondrial homeostasis
8
setting cardiac
8
cardiac i/r
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!